首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Significantly changed intergranular corrosion (IGC) and exfoliation corrosion (EFC) behaviors of the equal‐channel‐angular‐pressed (ECAPed) Al–Cu alloy were discovered through immersion test, electrochemical measurements, and microstructure observation. The ECAPed alloys with ultra‐fine grained (UFG) α(Al) matrix and extremely refined θ‐phase particles displayed obvious decreased IGC sensitivity, but deteriorated susceptibility to EFC. The decreased IGC sensitivity of ECAPed alloys presented decreased IGC propagation depths in immersion test in NaCl + H2O2 solutions and increased polarization resistance in electrochemical impedance spectrum test in MIL‐H‐600 solution. The reason for the decreased IGC sensitivity was the breakage of the net structure of θ phase during ECAP process, which destroys the continuity of IGC propagation channel. The deteriorated susceptibility to EFC of ECAPed alloys in EXCO solution presented gradual evolution from serious IGC attack into obvious lamellar EFC, and finally complete dissolution of surface grains. Meanwhile, the EFC propagation depths were sharply decreased with the increasing ECAP passes. This phenomenon was caused by the aspects ratio evolution of deformed grains and the gradually decreased IGC sensitivity of the ECAPed alloys.  相似文献   

2.
To avoid grain boundary (GB) precipitation during aging, a new strategy of in situ thermomechanical processing for age hardening alloys was proposed. Specifically, high-density nanoscale precipitates were introduced into ultrafine grain (UFG) interiors of 7075Al alloy by equal-channel-angular (ECAP) processing at 250 °C for 8 passes, thus avoiding GB precipitation. Tensile test results indicated that the UFG 7075Al alloy exhibits superior mechanical properties (yield strength of 350 MPa, ultimate tensile strength of 500 MPa, uniform elongation of 18% and tensile ductility of 19%) compared with the UFG 1050Al counterpart (yield strength of 170 MPa, ultimate tensile strength of 180 MPa, uniform elongation of 2.5% and tensile ductility of 7%). Fracture surface morphology studies revealed numerous homogeneous micro shear bands in necking shrinkage areas of both UFG 7075Al and 1050Al alloys, which are controlled by cooperative GB sliding. Moreover, the introduction of nanoscale precipitates in UFG 7075Al matrix weakened the tendency of shear fracture, resulting in a higher tensile ductility and more homogeneous deformation. Different from the GB precipitation during postmortem aging, in situ thermomechanical treatment dynamically formed GBs after precipitation, thus avoiding precipitation on GBs.  相似文献   

3.
近年来,围绕超细晶纯钛的制备及其性能提升方面开展了许多研究。本文综述了制备超细晶纯钛块材的等通道转角挤压工艺及其重要参数,分析了挤压过程中纯钛的位错滑移及孪晶变形机制。超细晶纯钛的强度、塑性、抗疲劳性能显著提高,而耐蚀性测试结果呈多样性,有待进一步研究。等通道转角挤压和后续热机械处理的结合,可进一步提高超细晶纯钛的综合性能,表明采用ECAP技术制备的超细晶纯钛在各行各业有着广阔的发展前景。  相似文献   

4.
钛及钛合金由于质轻、弹性模量低、生物相容性佳和骨整合性优异,已成为应用最广泛的生物医学金属材料之一。然而,较低的塑性、耐腐蚀性能和耐磨损性能限制了其发展和应用。剧烈塑性变形被认为是对金属材料最有效的晶粒细化方法之一,其中,等通道转角挤压(ECAP)是制备块状超细晶(UFG)/纳米晶金属材料的常用技术。通过ECAP变形,可以制备具有优异综合性能的UFG钛及钛合金。本文综述了生物医用UFG钛及钛合金的ECAP制备方式,着重讨论了ECAP变形对钛及钛合金的组织、力学性能、耐腐蚀性能和耐磨损性能的影响,分析了钛及钛合金的ECAP变形机制和晶粒细化机制,提出了通过ECAP变形结合传统塑性加工和变形后热处理来进一步优化钛及钛合金综合性能的想法。  相似文献   

5.
Ultrafine-grained (UFG) or nanocrystalline (NC) Cu–Al alloys were prepared using equal-channel angular pressing (ECAP) to investigate the influence of stacking fault energy (SFE) on the microstructural evolution during deformation and the corresponding mechanical properties. The grain refinement mechanism was gradually transformed from dislocation subdivision to twin fragmentation by tailoring the SFE of alloys. Meanwhile, homogeneous microstructures and nanoscale grains were readily achieved in the low-SFE Cu–Al alloys and the equilibrium grain size was decreased by lowering the SFE. Moreover, in the Cu–Al alloy with extremely low SFE, shear fracture occurred during ECAP at strain levels higher than two due to the formation of macroscopic shear bands. In addition, the normalized deformation conditions at large strain were qualitatively discussed. More significantly, the strength and uniform elongation were simultaneously improved by lowering the SFE. This simultaneity results from the formation of profuse deformation twins and microscale shear bands, and their extensive intersections.  相似文献   

6.
Mg-RE(rear earth) alloys with long period stacking(LPSO) structures have great potential in biomedical applications. The present work focused on the microstructure and corrosion behaviors of Mg 98.5 Y_1 Zn_(0.5) alloys with 18 R LPSO structure after equal channel angular pressing(ECAP). The results showed that the ECAP process changed the grain size and the distribution of LPSO particles thus controlled the total corrosion rates of Mg 98.5 Y_1 Zn_(0.5) alloys. During the ECAP process from 0 p to 12 p, the grain size reduced from 160–180 μm(as-cast) to 6–8 μm(12 p). The LPSO structures became kinked(4 p), then started to be broken into smaller pieces(8 p), and at last comminuted to fine particles and redistributed uniformly inside the matrix(12 p). The improvement in the corrosion resistance for ECAP samples was obtained from 0 p to 8 p, with the corrosion rate reduced from 3.24 mm/year(0 p) to 2.35 mm/year(8 p) in simulated body fluid, and the 12 p ECAP alloy exhibited the highest corrosion rate of 4.54 mm/year.  相似文献   

7.
Two aluminum alloys, Al–8Zn and Al–6Bi–8Zn were subjected to equal channel angular pressing (ECAP) up to 5 passes at room temperature. The microstructural evolution and the grain refinement behavior of these alloys were systematically studied by electron backscatter diffraction (EBSD). After 5 passes of ECAP, ultrafine grained microstructures formed in both alloys. However, the grain structure in the Al–6Bi–8Zn alloy is much finer than that of Al–8Zn alloy, showing that the soft Bi particles have a strong influence on enhancing the grain refinement during ECAP. The strengths of the ECAP-processed materials were measured by hardness test and it showed that after 5 passes of ECAP, the hardness of the Al–6Bi–8Zn alloy was higher than that of the Al–8Zn alloy. The effects of soft Bi particles on the deformation behavior during ECAP and the final strength of the Al–6Bi–8Zn alloy were discussed.  相似文献   

8.
Corrosion of ultra-fine grain (UFG) copper fabricated by equal-channel angular pressing (ECAP) has been investigated in comparison with that in recrystallized coarse grain (CG) copper. Corrosion current was estimated by a Tafel extrapolation method to examine the kinetics of corrosion in a modified Livingstone etchant, which is sensitive to dislocations and grain boundaries. UFG copper exhibited a lower corrosion current in comparison with that in its recrystallized coarse grain (CG) counterpart despite the fact that the dislocation density and total fraction of grain boundaries are much greater in UFG copper than in CG copper. Corrosion damage on the surface of UFG copper is macroscopically rather uniform whereas obvious attack at grain boundaries and selective corrosion of some grain interiors were observed in CG copper.  相似文献   

9.
在室温对完全时效7003铝合金进行4道次ECAP(Bc)挤压,成功获得大约200nm至几百纳米的超细晶粒。借助透射电镜(TEM)观察ECAP变形过程中的微观组织特征,如位错缠绕区(DTZ)、位错胞结构、孤立位错胞(IDC)、稠密位错墙(DDW)、胞块(CB)、显微带(MB)和S带等。7003铝合金在变形过程中的细化机制主要是位错分割机制。  相似文献   

10.
Corrosion behavior of ultra-fine grained(UFG) industrial Al fabricated by equal channel angular pressing(ECAP) for 16 pass times was investigated by potentiodynamic polarization test, potentiostatic polarization test, electrochemical impedance spectroscopy(EIS) measurement, immersion test and surface analyses (OM and SEM). The microstructures including grain size, grain boundaries and dislocations were also observed by TEM. The results show that the UFG industrial pure Al has more positive pitting potential, less corrosion current density and five times larger passive film resistance compared with the coarse grained(CG) one. It was found that the increased pitting resistance is profited from the more stable passive film kept in the Cl aggressive solution due to more grain boundaries, larger fraction of non-equilibrium grain boundaries and residual stress of the UFG industrial pure Al.  相似文献   

11.
为了研究Al2Ca相和Mg2Ca相对Mg-Al-Ca-Mn合金腐蚀行为的影响,采用金相显微镜、扫描电子显微镜、浸泡和电化学测试对仅含Al2Ca相(2Ca)和仅含Mg2Ca相(4Ca)的铸态及ECAP态合金进行研究。在腐蚀初期,两种铸态合金的腐蚀速度比ECAP合金的慢。随着腐蚀时间的延长,ECAP合金的腐蚀程度变得比铸态合金轻微,这主要归因于ECAP合金中第二相的有效细化及分散。此外,2Ca合金的腐蚀程度始终小于4Ca合金,表明Al2Ca相比Mg2Ca相更有利于提高Mg-Al-Ca-Mn合金的耐腐蚀性能。最后,根据合金腐蚀表面的形貌观察和电化学测试结果,对由Al2Ca相和Mg2Ca相的分布和形貌引起合金的不同腐蚀机理进行讨论。  相似文献   

12.
综述了大塑性变形工艺制备超细晶铝锂合金的显微组织及其力学性能,分析了大塑性变形过程中铝锂合金的组织演变及其影响因素。铝锂合金的强化机制主要是基于析出强化,结合大塑性变形得到的超细晶粒组织可以显著提高强度和塑性,并得到优异的超塑性。表明大塑性变形加工铝锂合金,尤其是等通道挤压制备的超细晶铝镁锂合金在超塑性工业具有广阔的发展前景。  相似文献   

13.
Aluminum overlay weld alloys with dispersed niobium carbide particles (NbCp/Al) were prepared by a plasma transferred arc welding process. The corrosion behavior of the NbCp/Al alloys was studied in sodium chloride solution by means of electrochemical techniques and scanning electron microscopy. The aluminum alloys under investigation were pure aluminum, aluminum-magnesium, aluminum-magnesium-silicon, and aluminum-copper. The addition of NbC particles shifted the corrosion potentials in the positive direction. However, the pitting potentials were almost similar to that of overlay weld alloy without NbC particles. In the immersion test in quiescent 0.5M NaCl open to the air, preferential localized corrosion of all NbCp/Al alloys was observed at the matrix between NbC particles and crystalline phases.  相似文献   

14.
The corrosion behaviour of cast and heat-treated Al-6%Zn-1%Mg and Al-6%Zn-1%Mg-1%Ag alloys and metal matrix composites (MMCs) were investigated using dynamic polarisation techniques, followed by scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). The addition of silver and the incorporation of continuous Altex fibres into the alloys have a positive effect on the materials’ corrosion resistance. It was observed that due to the presence of second phase particles and microsegregation, pitting occurs preferentially at the grain boundary and fibre/matrix interface regions in the cast alloys and composites, respectively.  相似文献   

15.
Abstract

Significant grain refinement and corrosion resistance improvement were achieved in industrial pure Al through equal channel angular pressing (ECAP). The effect of microstructure change on its corrosion resistance was investigated by optical/electron microscopy observation, constant immersion tests, polarisation tests and electrochemical impedance spectroscopy (EIS) in aqueous NaCl solution. The ultrafine grained (UFG) bulk pure Al (with grain sizes of 300–500 nm) has a higher pitting potential Epit, a lower corrosion current density Icorr in polarisation tests and an increased polarisation resistance Rp from EIS plots, along with reduced corrosion damage in immersion tests, compared with the as cast material. It was found that the improved corrosion resistance resulted from the uniform distribution of fine Si containing impurities and the formation of a denser oxide film. The ECAPed samples with smaller Si containing impurities have lower microgalvanic currents and reduced susceptibilities of pitting corrosion, which is consistent with the classical ‘small cathode, large anode’ mechanism. The strain induced crystalline defects, for example, high angle grain boundaries and dislocations, appear to provide more nucleation sites for the formation of a denser and thicker oxide film, thus enhancing its corrosion resistance.  相似文献   

16.
This paper described the mechanical properties and corrosion behaviour of new designed Mg–Gd–Nd–Zn–Zr alloy processed by equal channel angular pressing (ECAP) at 375°C. An attractive phenomenon was observed. Both strength and ductility of ultrafine grained Mg–Gd–Nd–Zn–Zr alloy were improved after multipass ECAP. The microstructure of the alloys became much finer and more homogeneous with increasing ECAP passes. The yield strength, ultimate tensile strength and elongation of the alloys under eight-pass ECAP process were over 223?MPa, 270?MPa and 36% respectively, showing desirable mechanical properties of equal channel angular pressed Mg–Gd–Nd–Zn–Zr alloy. The equal channel angular pressed alloy displayed a lower corrosion resistance immersed in Hank's solution due to the crystalline defects as well as the galvanic corrosion induced by precipitation of ultrafine β phase particles.  相似文献   

17.
研究了等通道转角挤压 (ECAP) 工艺处理对Zn-22Al合金耐腐蚀性能的影响,考察了显微组织演变对Zn-22Al合金在3.5% (质量分数) NaCl溶液中的失重及电化学腐蚀行为的影响。结果表明:相比铸态Zn-22Al合金,经过ECAP处理后的试样组织明显细化,晶粒尺寸均匀。晶粒细化导致晶界大量增加及应力增大,试样表面缺陷增多,富铝相被优先腐蚀后,导致被富铝相包围的富锌相脱落,腐蚀速率加快,腐蚀失重随着挤压道次的增加而增加。电化学测试结果表明,随着挤压道次的增加,Zn-22Al合金腐蚀电流密度逐渐增加,腐蚀电位逐渐下降,合金的耐腐蚀性能随挤压道次的增加而逐渐降低。  相似文献   

18.
In this study, the microstructure, mechanical properties and corrosion behaviors of a Zn–1.6 Mg(wt%) alloy during multipass rotary die equal channel angle pressing(RD-ECAP) processing at 150 °C were systematically investigated. The results indicated that a Zn + Mg_2 Zn_(11) + MgZn_2 ternary eutectic structure was formed in as-cast Zn–Mg alloy. After ECAP, the primary Zn matrix turned to fine dynamic recrystallization(DRX) grains, and the network-shaped eutectic structure was crushed into fine particles and blended with DRX grains. Owing to the refined microstructure, dispersed eutectic structure and dynamically precipitated precipitates, the 8 p-ECAP alloy possessed the optimal mechanical properties with ultimate tensile strength of 474 MPa and elongation of 7%. Moreover, the electrochemical results showed that the ECAP alloys exhibited similar corrosion rates with that of as-cast alloys in simulated body fluid, which suggests that a high-strength Zn–Mg alloy was successfully developed without sacrifice of the corrosion resistance.  相似文献   

19.
Microanalytical, mechanical, and corrosion studies were undertaken to investigate the effect of nano‐precipitates of Al(Scx−1Zrx) on the mechanical and corrosion characteristics of Al 2.5 alloy containing 0, 0.15, 0.3, 0.6, and 0.9 wt% of Sc with 0.15 wt% Zr. Addition of 0.3% Sc significantly increased the yield strength due to small precipitates sizes (5–19 nm) and the high coherency of the nano‐particles. Largest contributor to the strength was grain boundary strengthening caused by pinning of grain boundary precipitates. The alloys showed a good resistance to corrosion in 3.5 wt% neutral chloride solution. The alloy offered a high passivation tendency because of homogeneous coherent nano Al(Scx−1Zrx) precipitates. The nano precipitates interfaces and homogeneously distributed Al3Sc precipitates offer a high degree of corrosion resistance to Al 2.5 Mg Sc alloys compared to conventional aluminum alloys, such as Al 6061 and Al6013.  相似文献   

20.
Age-hardenable Al alloys may be successfully processed by equal channel angular pressing (ECAP) at room temperature, if the processing is carried out immediately after water quenching from the solution treatment temperature. It is important to estimate the critical time for any age-hardenable alloys, since after this time, ECAP processing will cause catastrophic cracking or segmentation at room temperature. In this study, ECAP processing was carried out on two age-hardenable Al alloys (2014 and 7075) at room temperature. The results demonstrated that the critical time could be predicted successfully by using tensile test curves related to different times after quenching. It is also shown that room temperature ECAP processing of these materials for more than a single pass is not possible and causes damage. However, a single pass will have significant effects on the strength of the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号