首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films of CuInSe2 have been evaporated onto glass substrates by flash evaporation. The as-deposited films are amorphous and annealing in selenium atmosphere produces polycrystalline films. The films were characterized bytem and x-ray diffraction techniques. The optical absorption of the films shows three energy gaps of 1·03, 1·07 and 1·22 eV. The crystal field and spin-orbit splitting are thus found to be 0·04 eV and 0·16 eV respectively. The percentaged-character of the valence band states is ∼35%. The Arrhenius plot of electrical conductivity of films showed impurity ionization ofE A = 75 meV.  相似文献   

2.
Polycrystalline thin films ofn-CdIn2S4 have been spray deposited onto amorphous and fluorinedoped tin oxide (FTO) coated glass substrates at the optimized substrate temperature of 380°C. The films were characterized by X-ray diffraction (XRD) and optical absorption studies. XRD studies revealed that the films were polycrystalline with spinel cubic structure. The optical absorption studies showed the band gap energy to be 2·14 eV. Photoelectrochemical (PEC) investigations were carried out using cell configurationn-CdIn2S4/1 M NaOH+1 M Na2S+1 M S/C. Using Butler model, the optical band gap and minority carrier diffusion length (L P) were found to be 2·22 eV and 0·07 μm, respectively. Gartner’s model was used to calculate the minority carrier diffusion length and the donor concentration (N D) for CdIn2S4 films at three different wavelengths.N D was found to be of the order of 1016 cm−3.  相似文献   

3.
The electrical properties of CdTe and optical properties of ZnS in nanocrystalline thin film form are studied with a view to have a clearer understanding of the optical processes and the carrier transport mechanisms in nanocrystalline II–VI semiconductors, in general. Nanocrystalline ZnS and CdTe films were deposited by magnetron sputtering of respective targets in argon plasma. The optical absorption data of nanocrystalline ZnS films (thickness 10–40 nm) could be explained by the combined effects of phonon and inhomogeneity broadening along with optical loss due to light scattering at the nanocrystallites. The conductivity of CdTe (grain size within 4–4·7 nm) showed (T 0/T) p dependence withp ∼ 0·5 indicating the presence of a Coulomb gap near the Fermi level. The width of the Coulomb gap varied within 0·02–0·04 eV depending on the deposition condition. The existing theoretical models were used for estimating hopping energy (0·02–0·04 eV) and hopping distance (2·8–5·1 nm) in nano CdTe films.  相似文献   

4.
The photocurrent and electrolyte electromodulation (EEM) spectra of thin films of metal-free phthalocyanine (H2Pc) and of copper phthalocyanine (CuPc) were investigated. The modulation spectra yielded three distinct features around 1·61, 2·30 and 2·93 eV for H2Pc and around 1·63, 2·04 and 3·20 eV for CuPc. The spectral dependence maxima of photoconductivity correspond to the modulation spectra. These features are interpreted to indicate transitions at critical points, i.e. the existence of transitions between three valence bands, since Pc’s are p-type, and the lowest conduction band in Pc’s.  相似文献   

5.
CuInGaSe (CIGS) thin films were deposited on Mo/soda-lime glass substrates by electrodeposition at different potentials ranging from ?0·3 to ?1·1 V vs Ag/AgCl. Cyclic voltammetry (CV) studies of unitary Cu, Ga, In and Se systems, binary Cu–Se, Ga–Se and In–Se systems and quaternary Cu–In–Ga–Se were carried out to understand the mechanism of deposition of each constituent. Concentration of the films was determined by energy dispersive spectroscopy. Structure and morphology of the films were characterized by X-ray diffraction and scanning electron microscope. The underpotential deposition mechanism of Cu–Se and In–Se phases was observed in voltammograms of binary and quaternary systems. Variation in composition with applied potentials was explained by cyclic voltammetry (CV) data. A suitable potential range from ?0·8 to ?1·0 V was found for obtaining films with desired and stable stoichiometry. In the post-annealing films, chalcopyrite structure starts forming in the samples deposited at ?0·5 V and grows on varying the applied potential towards negative direction. By adjusting the composition of electrolyte, we obtained the desired stoichiometry of Cu(In0·7Ga0·3)Se2.  相似文献   

6.
ZnSe1?x Te x films were deposited by the electron beam evaporation technique at a substrate temperature of 300 °C on glass and ITO coated GaAs substrates. The films exhibited cubic structure. Photoluminescence (PL) was studied at room temperature using an excitation wavelength of 320 nm. The films deposited on glass substrates exhibited band edge luminescence and self activated luminescence bands at 2.69 and 2.39 eV respectively. Atomic force microscopic studies indicated that the grain size increased with increase of Te content in the ternary. PL studies on the ZnSe1?x Te x /GaAs/ITO strucrure was made with an excitation of 265 nm. The films exhibited band edge emission at 2.33 eV which confirms the incorporation of Te in ZnSe. Another peak ar 2.56 eV was also observed.  相似文献   

7.
The electrical and optical properties of In2O3 films prepared at room temperature by activated reactive evaporation have been studied. Hall effect measurements at room temperature show that the films have a relatively high mobility 15 cm2v−1s−1, high carrier concentration 2·97 × 1020/cm3, with a low resistivityρ = 1·35 × 10−3 ohm cm. As-prepared film is polycrystalline. It shows both direct and indirect allowed transitions with band gaps of 3·52eV and 2·94eV respectively.  相似文献   

8.
Group III-V compound B-Sb films were synthesized from B/Sb/…/B multilayer films deposited by electron gun evaporation onto silicon substrate and subjecting the above multilayer to rapid thermal annealing at 773 K for 3 min. The films were characterized by XRD, TEM, XPS and optical studies. XPS studies indicated the ratio of B: Sb ∼ 1. XRD and electron diffraction patterns indicated the reflections from (100), (111), (102) and (112) planes of zinc blende BSb. Band gap evaluated from optical studies was ∼ 0·51 eV. Refractive index of the films varied between 1·65 and 2·18 with increasing energy of incident photon and plasma frequency (ωp) was estimated to be ∼2·378×10−14 s−1. The effective mass was computed to be ∼ 0·0845 me.  相似文献   

9.
Flash-evaporated technique has been developed for deposition of CuInSe2 thin films. A control over the stoichiometry and chemical composition of the films has been obtained by varying the deposition parameters. Single phase chalcopyrite structure films with optical gap ∼ 1·15 eV have been obtained. The electronic properties of the films have been tailored for solar cell applications.  相似文献   

10.
In x Ga1−x As (0·06≤x≤0·35) epilayers were grown on GaAs substrates by atmospheric pressure metal organic chemical vapour deposition technique. Surface morphology and lattice mismatch in the InGaAs/GaAs films of different compositions were studied. Cross-hatched patterns were observed on the surface of the epilayers for bulk alloy composition up tox≈0·25. Forx>0·3, a rough textured surface morphology was observed.  相似文献   

11.
The wavelength, temperature, time and intensity dependence of photocurrent of metal-free phthalocyanine (H2Pc) and copper phthalocyanine (CuPc) single crystals were investigated. The thermal activation energies in the dark are 0·5 and 0·6 eV for H2Pc and CuPc respectively and the corresponding photo-thermal activation energies are 0·3 and 0·2 eV. An energy level scheme for single crystals of H2Pc and CuPc is proposed which consists of two trapping levels and five narrow optically active valence bands. In H2Pc (CuPc), one trapping level at 0·5 eV (0·6 eV) above the valence band edge to which the charge carriers are thermally excited in the dark; and the other trapping level is at 0·3 eV (0·2 eV) below the conduction band edge where all the optical transitions terminate. In H2Pc(CuPc), the forbidden gap is 1·44 eV (1·34 eV) wide; the five valence bands are at the band edge, and 0·09 (0·22), 0·42 (0·63), 0·69 (0·90), 1·32 (2·17) eV below the band edge.  相似文献   

12.
Copper indium sulphide (CIS) films were deposited by spray pyrolysis onto glass substrates from aqueous solutions of copper (II) sulphate, indium chloride and thiourea using compressed air as the carrier gas. The copper/indium molar ratio (Cu/In) in the solution 1(1:1) and the sulphur/copper ratio (S/Cu) was fixed at 4. Structural properties of these films were characterized. The effects of Zn (0–5%) molecular weight compared with CuInS2 Source and different substrate temperatures on films properties were investigated using X-ray diffraction (XRD) and optical transmission spectra. Optical characteristics of the CuInS2 films have been analysed using spectrophotometer in the wavelength range 300–1100 nm. The absorption spectra of the films showed that this compound is a direct bandgap material and gap values varied between 1·55 and 1·57 eV, depending on the substrate temperatures. Zn-doped samples have a bandgap energy of 1·55–1·95 eV. It was observed that there is an increase in optical bandgap with increasing Zn % molecular weight. The optical constants of the deposited films were obtained from the analysis of the experimentally recorded transmission and absorption spectral data. The refractive index, n and dielectric constants, ε 1 and ε 2, were also discussed and calculated as a function of investigated wavelength range and found it dependent on Zn incorporation. We found that the Zn-doped CuInS2 thin films exhibit P-type conductivity and we predict that Zn species can be considered as suitable candidates for use as doped acceptors to fabricate CuInS2-based solar cells. The paper presents a study concerning the influence of deposition parameters (temperature of the substrate and concentration of Zn (1–5)% from 0·16 M ZnCl2) on the quality of CuInS2 thin films achieved by spray pyrolysis on glass substrate from solutions containing 0·02 M CuCl2·2H2O, 0·16 M thiourea and 0·08 M In2Cl3·5H2O.  相似文献   

13.
This paper presents a study of responsivity of InAs0·3Sb0·7 infrared detector. Thin films of InAs0·3Sb0·7 semiconducting compound were prepared by vacuum evaporation on glass and mica substrates held at 473° K under a pressure of 10−6 torr with deposition rate of 20 A°/sec. The isothermal annealing process was employed to improve the quality of the films. The responsivity variation with blackbody temperature (333° K to 673° K), detector temperature (80° K to 303° K) and frequency (10 Hz to 10 kHz) was measured. The experimental set-up and the results are presented and discussed.  相似文献   

14.
Pure tungsten oxide (WO3) and iron-doped (10 at.%) tungsten oxide (WO3:Fe) nanostructured thin films were prepared using a dual crucible Electron Beam Evaporation (EBE) technique. The films were deposited at room temperature under high vacuum onto glass as well as alumina substrates and post-heat treated at 300 °C for 1 h. Using Raman spectroscopy the as-deposited WO3 and WO3:Fe films were found to be amorphous, however their crystallinity increased after annealing. The estimated surface roughness of the films was similar (of the order of 3 nm) to that determined using Atomic Force Microscopy (AFM). As observed by AFM, the WO3:Fe film appeared to have a more compact surface as compared to the more porous WO3 film. X-ray photoelectron spectroscopy analysis showed that the elemental stoichiometry of the tungsten oxide films was consistent with WO3. A slight difference in optical band gap energies was found between the as-deposited WO3 (3.22 eV) and WO3:Fe (3.12 eV) films. The differences in the band gap energies of the annealed films were significantly higher, having values of 3.12 eV and 2.61 eV for the WO3 and WO3:Fe films respectively. The heat treated films were investigated for gas sensing applications using noise spectroscopy. It was found that doping of Fe to WO3 produced gas selectivity but a reduced gas sensitivity as compared to the WO3 sensor.  相似文献   

15.
Diamond like carbon films and C-N films were prepared using ion beam assisted deposition technique (IBAD). Tribological properties were studied by subjecting DLC coated films to the accelerated wear tests. These tests indicated a significant improvement in the mechanical surface properties of glass by DLC coating. Better wear features were obtained for thinner DLC coating as compared to the thicker ones. We also studied the optical properties and obtained a band gap of 1·4 eV for these films. An attempt was made to prepare C3N4 films by using IBAD. We observed variation in the nitrogen incorporation in the film with the substrate temperature.  相似文献   

16.
Transparent films of copper yttrium oxide doped with 2% calcium have been prepared by rf magnetron sputtering. The films show a conductivity of 8 Scm−1 on intercalation of oxygen at high pressure, which reduced the transparency in the visible region. The Ca-doped CuYO2 films before oxygen intercalation show an average transmission of about 60% which reduces to about 45% upon oxygen intercalation. The temperature dependence of the conductivity indicates semiconductor behaviour with low activation energy of 0·59 eV at room temperature. The positive sign of Seebeck coefficient (+274 μVK−1) confirms the p-type conductivity of the films. The optical bandgap of CuYO2 was found to be 3·15 eV.  相似文献   

17.
Two traps with activation energies ofE c – 0·47 eV andE v + 0·79 eV have been detected in semi-insulating GaAs:Cr through optical transient current spectroscopy (otcs) in the temperature range 300–450 K. The latter trap gives rise to rising current transients which result in a negative peak in theotcs spectrum. The theoretical expressions for current transients have been derived.  相似文献   

18.
Cd 0·8Zn 0·2S:Cu films of 1 ·3–6 ·1 mole percentage of copper have been grown on mica substrate by using chemical bath deposition technique. The films have been characterized by using XRD, SEM and UV spectrophotometer. X-ray diffraction studies have shown that the films are polycrystalline. The average crystallite size as measured from XRD data is in the range of 125–130 nm. The activation energies of Cd 0·8Zn 0·2S:Cu films, as observed from d.c. conductivity studies in the temperature range (77–300 K) studied, decreased with the increase in Cu concentration. The optical absorption studies have revealed that the energy gap increases gradually with an increase in Cu concentration, whereas conductivity studies have shown an anomalous increase in conductivity in films of 3 ·8 mole percentage of Cu. SEM pictures have revealed the presence of defects with spherical structure having fibre network. The variation of electrical conductivity is explained based on the defects present and by adopting tunneling mechanism.  相似文献   

19.
In an effort to prepare thin films of novel semiconductor materials that contain only cost effective, abundant, and relatively less-toxic materials, lead antimony sulfides films have been prepared. Herein, we report the thin film preparation of semseyite (Pb9Sb8S21) via annealing of precursor films under sulfur vapor. Pb/Sb alloy precursor films suffered substantial changes in stoichiometry and produced rough films, whereas precursor films composed of multilayers of PbS and amorphous (Sb,S) produced smooth and compact phase-pure films composed of fine grains. Optical measurements indicated a direct band gap of 1.93 eV and a strong absorption coefficient of 1.0 × 105 cm 1.  相似文献   

20.
Thin films of CuIn1 − xAlxSe2 were grown using a cathodic electrodeposition technique. The CuIn1 − xAlxSe2 films were electrodeposited on SnO2 coated glass from aqueous baths containing different Al contents using deposition potentials ranging from − 650 mV to − 850 mV versus a saturated calomel electrode. The electrodeposited films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-rays, atomic force microscopy, and UV-VIS-NIR spectroscopy. The results show that single phase CuIn1 − xAlxSe2 films with Al content x around 0.27-0.33 having good stoichiometry can be produced in the above potential range. XRD and SEM studies show that films deposited at − 650 mV and − 750 mV have good crystallinity while those grown at − 850 mV have comparatively poorer crystallinity. SEM studies show that the particle size of the films grown at − 650 and − 750 mV is in the micron range but is around 100 nm when grown at − 850 mV. Optical studies show that the optical band gap shifts with Al content from 1.21 eV for x = 0.27 to about 1.42 eV for x = 0.33. The as-grown as well as vacuum annealed films were n-type in conductivity with resistivity in the range 3-5 × 10−3 Ω cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号