首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The improved resolution and sectioning capability of a confocal microscope make it an ideal instrument for extracting three-dimensional information especially from extended biological specimens. The imaging properties, also with finite detection pinholes are considered and a number of biological applications demonstrated.  相似文献   

2.
The form of the interference term image in scanning confocal and scanning conventional interference microscopes is identical in all respects including optical sectioning. This observation is used to obtain confocal images and surface profiles from conventional scanning interference microscope images.  相似文献   

3.
Shortly after its development, the white light supercontinuum laser was applied to confocal scanning microscopy as a more versatile substitute for the multiple monochromatic lasers normally used for the excitation of fluorescence. This light source is now available coupled to commercial confocal fluorescence microscopes. We have evaluated a supercontinuum laser as a source for a different purpose: confocal interferometric imaging of living cells and artificial models by interference reflection. We used light in the range 460-700 nm where this source provides a reasonably flat spectrum, and obtained images free from fringe artefacts caused by the longer coherence length of conventional lasers. We have also obtained images of cytoskeletal detail that is difficult to see with a monochromatic laser.  相似文献   

4.
We demonstrate the simultaneous recording of confocal lifetime images of multiple fluorophores. The confocal microscope used in the study combines intensity-modulated laser illumination, lock-in detection and spectral separation of the fluorescent light. A theoretical investigation is presented that describes how the signal-to-noise ratio (SNR) depends on various factors such as modulation frequency, degree of modulation and number of detected photons. Theory predicts that, compared with ordinary intensity images, lifetime images will have a SNR that is, at best, approximately four times lower. Experimental results are presented that confirm this prediction.  相似文献   

5.
A theory for multiphoton fluorescence imaging in high aperture scanning optical microscopes employing finite sized detectors is presented. The effect of polarisation of the fluorescent emission on the imaging properties of such microscopes is investigated. The lateral and axial resolutions are calculated for one-, two- and three-photon excitation of p-quaterphenyl for high and low aperture optical systems. Significant improvement in lateral resolution is found to be achieved by employing a confocal pinhole. This improvement increases with the order of the multiphoton process. Simultaneously, it is found that, when the size of the pinhole is reduced to achieve the best possible resolution, the signal-to-noise ratio is not degraded by more than 30%. The degree of optical sectioning achieved is found to improve dramatically with the use of confocal detection. For two- and three-photon excitation axial full width half-maximum improvement of 30% is predicted.  相似文献   

6.
Imaging properties of scanning confocal electron microscopy (SCEM) were studied by calculating simple model systems using the multislice method. A simple geometrical explanation was given, particularly for the difference between bright field (BF) and annular dark field (ADF) SCEM. It is demonstrated that the BF-SCEM image contrast consists of two features. One gradually changes over a wide defocus range and depends on the lateral size of the object. Another appears only near the focus and is independent of sample size. On the contrary, ADF-SCEM image contrast does not depend on the lateral size of the object. Therefore, the ADF-SCEM will provide more readily interpretable image contrast.  相似文献   

7.
Scanning laser microscopy, in the confocal mode (CSLM) has been applied to a granitic rock to characterize its fissure space. The technique provides a unique three-dimensional picture of the rock microfractography. CSLM is unique in observing fine details of the fractographic network (connectivity, tortuosity, etc.), its geometry and its relation to other rock-forming components. The fractographic images with standard fluorescence microscopy are compared with those obtained with CSLM. The examples presented emphasize the advantages of CSLM: three-dimensional visualization of the microfractographic network, crack connectivity, automatic evaluation of direction and slope of fissures. These studies are related to the migration of radionuclides in the geosphere. The relations between potentially water-conducting open fissures, and the rock-forming minerals provide a means of modelling the ‘radionuclide retardation mechanism’, a security factor in their definitive storage in rock masses.  相似文献   

8.
The optical properties of a general scanning microscope are determined within the framework of Fourier imaging theory. For a simple model optical system, with Gaussian lens and detector apertures, the contrast transfer function can be expressed in terms of elementary functions. The theory predicts that spatial resolution and depth discrimination vary continuously with detector aperture and that defocus phase contrast is present in transmission images obtained with a symmetric objective, collector lens confocal microscope.  相似文献   

9.
To obtain colour reflected confocal images we have incorporated three lasers (HeNe: 633 nm; NdYAG: 532 nm; HeCd: 442 nm) and three photomultiplier detectors into our on-axis scanning system then adjusted the registration of the simultaneous output signals to produce full-colour images on a video monitor. Colour confocal images were produced from multi-stained fixed tissue as well as from natural pigments in fresh plant material. Rayleigh scattering properties of immunogold-labelled specimens were studied to show how variations in colour response can be utilized to identify subwavelength gold particles. Colour stereo pairs were produced to illustrate the accuracy with which the three-laser microscope system can record depth information without incurring problems due to chromatic aberration effects.  相似文献   

10.
随着生物医学技术的发展,组织样本经常被多种荧光标记物标记,需要通过光谱成像的方法区分出样本中不同的成分。本文在共聚焦显微镜基础上,介绍了一种由精密丝杠和步进电机控制的狭缝机构实现光谱成像的方法,讨论了狭缝缝片的具体设计和狭缝运动精度对光谱带宽和波长准确度的影响。  相似文献   

11.
A theoretical analysis of a new technique for fluorescence lifetime measurement, relying on (near steady state) excitation with short optical pulses, is presented. Application of the technique to confocal microscopy enables local determination of the fluorescence lifetime, which is a parameter sensitive to the local environment of fluorescent probe molecules in biological samples. The novel technique provides high time resolution, since it relies on the laser pulse duration, rather than on electronic gating techniques, and permits, in combination with bilateral confocal microscopy and the use of a (cooled) CCD, sensitive signal detection over a large dynamic range. The principle of the technique is discussed within a theoretical framework. The sensitivity of the technique is analysed, taking into account: photodegradation, the effect of the laser repetition rate and the effect of non-steady-state excitation. The features of the technique are compared to more conventional methods for fluorescence lifetime determination.  相似文献   

12.
Laser scanning confocal microscopes are essential and ubiquitous tools in the biological, biochemical and biomedical sciences, and play a similar role to scanning electron microscopes in materials science. However, modern laser scanning confocal microscopes have a number of advantages for the study of materials, in addition to their obvious uses for high resolution reflected and transmitted light optical microscopy. In this paper, we provide several examples that exploit the laser scanning confocal microscope's capabilities of pseudo-infinite depth of field imaging, topographic imaging, photo-stimulated luminescence imaging and Raman spectroscopic imaging.  相似文献   

13.
Epifluorescence, confocal and total internal reflection microscopy are the most widely used techniques for optical single‐molecule experiments. Employing these methods, we recorded the emission intensity of the same single molecule as a function of the excitation rate under otherwise identical experimental conditions. Evaluation of these data provides a quantitative comparison of the signal‐to‐background ratios that can be achieved for the three microscopic techniques.  相似文献   

14.
In three-dimensional (3-D) fluorescence images produced by a confocal scanning laser microscope (CSLM), the contribution of the deeper layers is attenuated due to absorption and scattering of both the excitation and the fluorescence light. Because of these effects a quantitative analysis of the images is not always possible without restoration. Both scattering and absorption are governed by an exponential decay law. Using only one (space-dependent) extinction coefficient, the total attenuation process can be described. Given the extinction coefficient we calculate within a non-uniform object the relative intensity of the excitation light at its deeper layers. We also give a method to estimate the extinction coefficients which are required to restore 3-D images. An implementation of such a restoration filter is discussed and an example of a successful restoration is given.  相似文献   

15.
A sphere attached to a cantilever is used simultaneously as an atomic force microscope (AFM) tip and as a curved reflective surface for producing scanning reflection interference contrast microscope (RICM) images of fluorescent beads dried onto a glass slide. The AFM and RICM images are acquired in direct registration which enables the identification of individually excited beads in the AFM images. The addition of a sharp, electron beam-deposited tip to the sphere gives nanometer resolution AFM images without loss of optical contrast.  相似文献   

16.
A confocal scanning light microscope coupled to the Daresbury Synchrotron Radiation Source is described. The broad spectrum of synchrotron radiation and the application of achromatic quartz/CaF2 optics allows for confocal imaging over the wavelength range 200–700 nm. This includes UV light, which is particularly suitable for high-resolution imaging. The results of test measurements using 290-nm light indicate that a lateral resolution better than 100 nm is obtained. An additional advantage of the white synchrotron radiation is that the excitation wavelength can be chosen to match the absorption band of any fluorescent dye. The availability of UV light for confocal microscopy enables studies of naturally occurring fluorophores. The potential applications of the microscope are illustrated by the real-time imaging of hormone traffic using the naturally occurring oestrogen coumestrol. (The IUPAC name for coumestrol is 3,9-dihydroxy-6H-benzofuro[3,2-c][1]benzopyran-6-one ( Chem. Abstr. Reg. No . 479-13-0). The trivial name will be used throughout this paper.)  相似文献   

17.
The optical arrangement for confocal scanning light microscopy can be incorporated in various imaging modes. Light microscopical specimens can be imaged with contrast enhanced, under γ-control, inverted, etc. In interference, conditions can be set such that either pure phase or pure amplitude images result. Stereoscopic images at arbitrary aspect ratios can be realized in CSLM by electronic processing of the data obtained when the specimen is sampled with more than one confocal point concurrently. Also forms of differential imaging either amplitude or phase are possible. The coupling of these imaging modes with the improved resolving powers of CSLM results in some unique imaging opportunities, especially of value for high resolution light microscopy of living specimens.  相似文献   

18.
We introduce a signal-to-noise ratio in an attempt to suggest an optimum pinhole size for confocal polarized light microscopes. We find that pinhole sizes which are typically 60% greater than those used in nonpolarized light confocal microscopy are appropriate.  相似文献   

19.
Although confocal microscopes have considerably smaller contribution of out-of-focus light than widefield microscopes, the confocal images can still be enhanced mathematically if the optical and data acquisition effects are accounted for. For that, several deconvolution algorithms have been proposed. As a practical solution, maximum-likelihood algorithms with regularization have been used. However, the choice of regularization parameters is often unknown although it has considerable effect on the result of deconvolution process. The aims of this work were: to find good estimates of deconvolution parameters; and to develop an open source software package that would allow testing different deconvolution algorithms and that would be easy to use in practice. Here, Richardson-Lucy algorithm has been implemented together with the total variation regularization in an open source software package IOCBio Microscope. The influence of total variation regularization on deconvolution process is determined by one parameter. We derived a formula to estimate this regularization parameter automatically from the images as the algorithm progresses. To assess the effectiveness of this algorithm, synthetic images were composed on the basis of confocal images of rat cardiomyocytes. From the analysis of deconvolved results, we have determined under which conditions our estimation of total variation regularization parameter gives good results. The estimated total variation regularization parameter can be monitored during deconvolution process and used as a stopping criterion. An inverse relation between the optimal regularization parameter and the peak signal-to-noise ratio of an image is shown. Finally, we demonstrate the use of the developed software by deconvolving images of rat cardiomyocytes with stained mitochondria and sarcolemma obtained by confocal and widefield microscopes.  相似文献   

20.
We demonstrate a novel design of two-colour two-photon fluorescence microscope in which isotropic three-dimensional imaging resolution and high scanning speed can be achieved simultaneously. In our scheme, a three-dimensional optical lattice constructed by multi-beam interference is used for two-colour two-photon fluorescence excitation. Our simulation results show that a resolution of 113.5 nm can be achieved in both transverse and axial directions with two pump pulses at the wavelengths of 400 and 800 nm, respectively; meanwhile, imaging speed can be greatly improved compared with that of traditional two-photon scanning fluorescence microscopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号