首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
For more than 20 years, high-pressure freezing has been used to cryofix bulk biological specimens and reports are available in which the potential and limits of this method have been evaluated mostly based on morphological criteria. By evaluating the presence or absence of segregation patterns, it was postulated that biological samples of up to 600 μm in thickness could be vitrified by high-pressure freezing. The cooling rates necessary to achieve this result under high-pressure conditions were estimated to be of the order of several hundred degrees kelvin per second. Recent results suggest that the thickness of biological samples which can be vitrified may be much less than previously believed. It was the aim of this study to explore the potential and limits of high-pressure freezing using theoretical and experimental methods. A new high-pressure freezing apparatus (Lei?a EM HPF), which can generate higher cooling rates at the sample surface than previously possible, was used. Using bovine articular cartilage as a model tissue system, we were able to vitrify 150-μm-thick tissue samples. Vitrification was proven by subjecting frozen-hydrated cryosections to electron diffraction analysis and was found to be dependent on the proteoglycan concentration and water content of the cartilage. Only the lower radical zone (with a high proteoglycan concentration and a low water content compared to the other zones) could be fully vitrified. Our theoretical calculations indicated that applied surface cooling rates in excess of 5000 K/s can be propagated into specimen centres only if samples are relatively thin (<200 μm). These calculations, taken together with our zone-dependent attainment of vitrification in 150-μm-thick cartilage samples, suggest that the critical cooling rates necessary to achieve vitrification of biological samples under high-pressure freezing conditions are significantly higher (1000–100 000 K/s) than previously proposed, but are reduced by about a factor of 100 when compared to cooling rates necessary to vitrify biological samples at ambient pressure.  相似文献   

2.
Using in parallel electron microscopy of ultrathin frozen-hydrated sections and freeze-fracture replicas, we compare the ultrastructural consequences of two freezing techniques: slam-freezing at liquid helium temperature and high-pressure freezing, on a model system, the DNA cholesteric liquid crystalline phase. Both freezing techniques are able to vitrify DNA liquid crystalline solutions containing up to 85% water, but induce structural rearrangements of the molecular organization. The cholesteric structure is preserved by the slam-freezing method despite the formation of periodic distortions induced by the mechanical compressive stress. In contrast, high-pressure freezing does not preserve the structure of the liquid crystal: the long-range cholesteric stratification disappears, and the local continuous twist between molecules is modified. These results show that vitrification, though necessary, may not be a sufficient token of preservation of the native state of hydrated materials. We discuss the possible origins of the molecular rearrangements that have time to occur in the specimens as a result of the low freezing rate permitted by the high-pressure freezing process.  相似文献   

3.
Cryo-electron microscopy of vitrified specimens makes it possible to observe fully hydrated biological samples unimpaired by chemical fixation, staining and dehydration. High-pressure freezing represents important progress since it allows a 10-fold increase in the vitrification depth. High-pressure freezing can also induce the formation of undesirable high-pressure forms of ice. We show that ice III or IX is amorphized under the electron beam at a dose of about 2400 electronsnm−2 and that the resulting amorphous ice is similar to the vitreous water obtained by high-pressure freezing.  相似文献   

4.
A method is described employing microcarrier spheres of cross‐linked dextran for obtaining ultra‐ and semithin vitreous sections from high‐pressure frozen anchorage‐dependent (mammalian) cells. Avoiding trypsination or scraping cells off from the culture surface, the presented approach allows for cryoimmobilization, cryosectioning and cryoelectron microscopy/tomography of frozen‐hydrated cells in an unperturbed manner which is important to preserve the native state of, for instance, the cytoskeleton. Furthermore, our studies on the ‘life cycle’ of Herpes simplex virus in Vero cells demonstrate that cell monolayers on microcarrier beads are well suited for fluorescence microscopic characterization of the sample prior to high‐pressure freezing.  相似文献   

5.
A new approach for cryofixation by high-pressure freezing   总被引:17,自引:0,他引:17  
A newly designed high-pressure freezing machine for cryofixation was established and tested (Leica EMPACT), based on ideas originally proposed by Moor & Riehle in 1968. The new machine, essentially an improved version of our prototype, pressurizes the sample to 2000 bar in a small container (using methylcyclohexane as hydraulic fluid) and at the same time cools the outer surface of the container with a jet of liquid nitrogen. The advantage of this approach is that the machine uses little liquid nitrogen and can be built small and light. The machine is able to vitrify and freeze well a variety of specimens, for example, plant leaves, yeast cells, liver or nerve tissue (more samples are shown at: http://www.ana.unibe.ch/empact ). Cooling efficiency is the same as in the traditional machines that use liquid nitrogen to pressurize and simultaneously cool the sample.  相似文献   

6.
7.
The use of filter membranes for high-pressure freezing of cell monolayers   总被引:2,自引:0,他引:2  
Rapid freezing of cells and tissues, followed by freeze‐substitution fixation and plastic embedding, has become a highly reliable method for preparing samples for imaging in the electron microscope. High‐pressure freezing is an efficient means of immobilizing suspensions of yeasts, thick pellets of mammalian cells, or small (< 0.5 mm) pieces of plant or animal tissue. Monolayers of cultured mammalian cells that are too thick for efficient immobilization by other modes of rapid freezing have also been successfully preserved by this method. Monolayer cultures are often important because they can be imaged by light microscopy (LM) both before and after their preparation for electron microscopy (EM). Additionally, some monolayer cultures serve as model systems for physiological processes, so it is important that cells under study can grow on a substrate that is both physiologically appropriate and convenient for EM processing. Here we describe a reliable method for preparing mammalian cell monolayers (PtK1 and polarized MDCK) for EM. Our protocol results in good preservation of cellular ultrastructure, it is a useful companion to studies of cell physioloy and, with some limitation, is suitable for correlative LM and EM.  相似文献   

8.
In many types of tissue, high-pressure freezing (HPF), followed by freeze substitution, can produce excellent ultrastructural preservation at depths over 10 times that obtained by other cryofixation techniques. However, in the case of neural tissue, the benefits of HPF have not been realized. In the present study, isolated frog ( Rana pipiens) retina was sliced at a thickness of 150 or 350 μm, rapidly frozen in a Balzers HPM 010 high-pressure freezer, and freeze substituted with 1% OsO4 and 0.1% tannic acid in acetone. Specially designed HPF chambers and specific freezing media (35% high-MW dextran for 150-μm slices or 15% low-MW dextran for 350-μm slices) were required for adequate freezing.
The quality of preservation after HPF was excellent throughout the retina in both the 150- and 350-μm slices, compared with chemically fixed slices. Specifically, HPF resulted in better preserved cellular, mitochondrial and nuclear membranes in all retinal layers.
This is the first study to successfully cryofix all of the layers of the retina. The increased depths of adequate freezing achieved by HPF should facilitate various ultrastructural studies of retina, as well as of other CNS tissues, where preservation approaching that of the 'native' state is required.  相似文献   

9.
A microbiopsy system for fast excision and transfer of biological specimens from donor to high‐pressure freezer was developed. With a modified, commercially available, Promag 1.2 biopsy gun, tissue samples can be excised with a size small enough (0.6 mm × 1.2 mm × 0.3 mm) to be easily transferred into a newly designed specimen platelet. A self‐made transfer unit allows fast transfer of the specimen from the needle into the specimen platelet. The platelet is then fixed in a commercially available specimen holder of a high‐pressure freezing machine (EM PACT, Leica Microsystems, Vienna, Austria) and frozen therein. The time required by a well‐instructed (but not experienced) person to execute all steps is in the range of half a minute. This period is considered short enough to maintain the excised tissue pieces close to their native state. We show that a range of animal tissues (liver, brain, kidney and muscle) are well preserved. To prove the quality of freezing achieved with the system, we show vitrified ivy leaves high‐pressure frozen in the new specimen platelet.  相似文献   

10.
High‐pressure freezing avoids the artefacts induced by conventional chemical fixation, and, in combination with freeze‐substitution and plastic embedding, is a reliable method for the ultrastructural analysis of mammalian cell monolayers. In order to high‐pressure freeze mammalian cell monolayers, cells have to be seeded on a suitable substrate. Unfortunately, electron microscopy analysis is often hampered by poor cell growth, changes in cell morphology induced by the cell substrate or cell loss during processing. We report a method to culture, high‐pressure freeze, freeze‐substitute and plastic embed mammalian cell monolayers. The method is based on the use of Aclar, a copolymer film with properties very similar to those of tissue culture plastic. We show that Aclar discs support the normal growth and morphology of a wide variety of mammalian cell types, and form an ideal starting point for high‐pressure freezing, freeze‐substitution and plastic embedding. We present a complete protocol, which, because of its simplicity and reproducibility, provides a method suitable for the routine analysis of mammalian cell monolayers by electron microscopy and tomography.  相似文献   

11.
We describe a procedure for high‐pressure freezing (HPF) of cultured cells using the HPF aluminium planchettes as a substrate. Cells are either grown directly on planchettes covered with Matrigel or allowed to attach to poly‐l ‐lysine‐coated planchettes. This method allows for rapid transfer of the cells into the HPF and minimizes physical and physiological trauma to the cells. Furthermore, the yield of well‐frozen cells approaches 100% for every cell type we have tried so far. In this report, we show well‐preserved ultrastructure in mitotic and interphase HeLa cells, isolated gastric parietal cells and isolated gastric glands. Immunogold labelling of H+/K+‐ATPase is shown in parietal cells of isolated gastric glands embedded in LR White resin. The aluminium planchettes appear to have little effect on cell physiology, as demonstrated by the fact that parietal cells cultured for 24–28 h on the planchettes retain their responsiveness to stimulation with histamine.  相似文献   

12.
In this paper, the Rapid Transfer System (RTS), an attachment to the Leica EMPACT2 high‐pressure freezer, is described as a new tool for special applications within the cryofixation field. The RTS is an automated system that allows for fast processing of samples (<5 s) that make it possible for the first time to use high‐pressure freezing in combination with high time resolution correlative light and electron microscopy. In addition, with a working cycle of 30 s this rapid turn over time allows one to acquire more samples of biopsy material before it deteriorates than with other HPF machines with longer cycle times. With the use of the RTS it was possible to obtain three samples each of four different tissues in 6 min. Together with the finding that 90% of samples of cells grown on sapphire discs were well frozen, the RTS was both fast and reliable. Most important, together with other newly developed accessories, the RTS made it possible to capture specific events occurring live in the cell as observed by light microscopy, to cryofix that sample/event within 4 s, and then to analyze that event at high resolution in the electron microscope with excellent preservation of ultra‐structure. These developments should give us the tools to unravel intracellular processes that can be observed by live cell imaging but are too rare or fast to be picked up by routine EM methods or where the history of a structure is necessary to be able to discern its nature.  相似文献   

13.
By applying high pressure freezing and freeze‐substitution, we observed large inclusions of homogeneous appearance in the front of locomoting Walker carcinosarcoma cells that have not been described earlier. Live cell imaging revealed that these inclusions were poor in lipids and nucleic acids but had a high lysine (and hence protein) content. Usually one such structure 2–5 μm in size was present at the front of motile Walker cells, predominantly in the immediate vicinity of newly forming blebs. By correlating the lysine‐rich areas in fixed and embedded cells with electron microscopic pictures, inclusions could be assigned to confined, faintly stained cytoplasmic areas that lacked a surrounding membrane; they were therefore called pseudovacuoles. After high‐pressure freezing and freeze substitution, pseudovacuoles appeared to be filled with 20 nm large electron‐transparent patches surrounded by 12 and 15 nm large particles. The heat shock protein Hsp90 was identified by peptide sequencing as a major fluorescent band on SDS‐PAGE of lysine‐labelled Walker cell extracts. By immunofluorescence, Hsp90 was found to be enriched in pseudovacuoles. Colocalization of the lysine with a potassium‐specific dye in living cells revealed that pseudovacuoles act as K+ stores in the vicinity of forming blebs. We propose that pseudovacuoles might support blebbing by locally regulating the intracellular hydrostatic pressure.  相似文献   

14.
A newly designated procedure for high‐pressure freezing of primary culture cells provided excellent ultrastructure of rabbit gastric parietal cells. The isolated parietal cells were cultivated on Matrigel‐coated aluminium plates for conventional subsequential cryoimmobilization by high‐pressure freezing. The ultrastructure of different organelles (Golgi apparatus, mitochondria, multivesicular bodies, etc.) was well preserved compared to conventional chemical fixation. In detail, actin filaments were clearly shown within the microvilli and the subapical cytoplasm. Another striking finding on the cytoskeleton system is the abundance of microtubules among the tubulovesicles. Interestingly, some microtubules appeared to be associating with tubulovesicles. A large number of electron‐dense coated pits and vesicles were observed around the apical membrane vacuoles in cimetidine‐treated resting parietal cells, consistent with an active membrane uptake in the resting state. Immunogold labelling of H+/K+‐ATPase was seen on the tubulovesicular membranes. When stimulated with histamine, the cultured parietal cells undergo morphological transformation, resulting in great expansion of apical membrane vacuoles. Immunogold labelling of H+/K+‐ATPase was present not only on the microvilli of expanded apical plasma membrane vacuoles but also in the electron‐dense coated pits. The present findings provide a clue to vesicular membrane trafficking in cultured gastric parietal cells, and assure the utility of the new procedure for high‐pressure freezing of primary culture cells.  相似文献   

15.
In comparison with other fixation methods, high-pressure freezing and freeze-substitution of Petunia ovules lead to improved ultrastructural preservation of all tissues. Crucial for adequate high-pressure freezing is the absence of air in the specimen sandwich; air has to be replaced by an embedding fluid. Frequently, 1-hexadecene is used for this purpose. Using 1-hexadecene as an embedding fluid resulted in only 5–10% of Petunia ovules being preserved without disturbance of the ultrastructure due to ice-crystal damage. Since 1-hexadecene is not soluble in acetone at − 90 °C, freeze-substitution is hindered when ovules remained completely surrounded by it; this results in recrystallization when the temperature is raised. We tested and compared the suitability of heptane and isooctane as embedding fluids for high-pressure freezing and freeze-substitution, reasoning that because of their low melting points and low relative densities, phase separation during freeze-substitution would result in complete exposure of the ovules to the substitution medium, leading to adequate freeze-substitution. Using either heptane or isooctane as an embedding fluid yielded up to 90% ice-crystal-free ovules. Both compounds, however, have some damaging effects on the outer one or two cell layers of the ovule, but not on the inner tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号