首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction: The corneal tissue was processed in fixatives and embedded in resin for transmission electron microscopy to observe the ultrastructure of the collagen fibrils (CFs). The effect of these processing methods on the CF diameter and the interfibrillar spacing was studied. Methods: Four normal human corneal buttons were used for this study. A part of each cornea was fixed in 2.5% glutaraldehyde containing cuprolinic blue in sodium acetate buffer and embedded in spurr's resin (SpurrCB). A second part of each cornea was fixed in 2.5% glutaraldehyde + osmium tetroxide and embedded spurr's resin (SpurrOsm). The third part of each cornea was fixed in paraformaldehyde (4%) and embedded in LR White at 4°C (LRWhite). Ultrathin sections were stained with uranyl acetate and lead citrate. Results: In the tissue, fixed in SpurrCB, the diameter was 38.4 ± 5.9 nm and spacing between CF was 52.5 ± 5.3 nm. In the tissue fixed in SpurrOsm, the diameter was 28.37 ± 5.84 nm and spacing between CF was 45 ± 4.57 nm. In the tissue fixed in LR White, the CF diameter was 24 ± 2.3 nm and spacing between CF was 39.0 ± 4.2 nm. The diameters and interfibrillar spacing of the tissue processed by SpurrCB, SpurrOsm, and LRWhite were significantly different (P < 0.001) from one another. Conclusion: Our study shows that there is a variation in the CF diameter and spacing depending on the method of fixation and embedding resins used. This needs to be considered when comparative studies using different methods are done. Microsc. Res. Tech. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Cells were cultivated on transparent conductive substrates, glass slides coated with indium oxide; individual cells were marked with a diamond indentor. Cell cultures were frozen (–15°C), thawed, and then stained with fluorescent dyes to determine cell damage. The marked cells were examined by phase contrast, fluorescence, and Nomarski DIC microscopy. After aldehyde and osmium tetroxide fixation, the cell preparations were sequentially treated with tannic acid, uranyl acetate, and lead citrate. The same marked cell could be sequentially studied by light microscopy (LM; in water immersion conditions), scanning electron microscopy (SEM; after dehydration and critical point drying), and transmission electron microscopy (TEM; after embedding of cell samples in epoxy resin and laser marking of the cell previously marked with a diamond indentor). The method used ensures good preservation of cell morphology, cell surface relief, and intracellular structures. The treatment used renders the cells conductive and permitted SEM of uncoated culture cells on conductive substrates.  相似文献   

3.
Quantitative studies were done with the scanning electron microscope (SEM) on aortic endothelial cells from ten rabbits. Of these, five were plastic casts and five were dehydrated with three different, but standard, techniques. The results indicated that all forms of dehydration caused significant shrinkage artefacts and that these were different in different directions in both the thoracic and abdominal aorta. The greatest shrinkage was found with the critical point drying technique, 45% in the abdominal aorta and 31% in the thoracic aorta. In the abdominal aorta this shrinkage was mainly due to a shrinkage in length (36%) rather than a shrinkage in width (15%). In comparison, in the thoracic aorta critical point drying resulted in a 15% shrinkage in length and a 19% shrinkage in width. Air drying and alcohol dehydration caused considerable shrinkage (29% and 18% respectively in the thoracic aorta, 29% and 36% respectively in the abdominal aorta). Directional differences were also found with these techniques, for instance alcohol dehydration in the thoracic aorta resulted in 0% shrinkage in length and 18% shrinkage in width.  相似文献   

4.
Common methods for the preparation of cultured cells for concurrent light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) are not completely satisfactory. This article describes how we grow mammalian cells on plastic disks made from Aclar film. Aclar is a transparent fluorinated-chlorinated thermoplastic that contains no volatile components and is, for all practical purposes, chemically inert. Cells adhere to it readily and remain attached after fixation, dehydration, and critical-point drying or embedding. The film also accepts heavy metal coating by ionic bombardment and is extremely stable in the vacuum of the SEM. LM observations are unhindered by Aclar, since the film is as transparent as glass. Fluorescence microscopy is possible with this film, since it exhibits no detectable autofluorescence. During SEM observation, the film has great dimensional stability, and the cells and heavy metal coating remain attached to the Aclar even under high-resolution operating conditions. TEM processing of specimens grown on Aclar is simplified by the fact that Aclar does not stick to the epoxy resins used in EM. Furthermore, Aclar is easily sectioned and does not damage knives used in ultramicrotomy. The use of Aclar film considerably simplifies the preparation of cultured cells for all types of microscopy. This method is particularly useful in correlating surface features between SEM and TEM observations.  相似文献   

5.
A method is presented by which water is preserved as ice during examination of the lung in the scanning electron microscope (SEM). The lung need only be inflated, frozen, transferred to the microscope and examined with the electron beam. Chemical fixation, solvent dehydration, and drying are not necessary. The low-temperature SEM of Pawley and Norton [11] maintains lung at ?180° C, nearly liquid nitrogen temperature, for extended periods with a Joule-Thomson refrigerator built into the stage. It has an integral high-vacuum preparation chamber attached to the microscope column which allows serial fracture, low-magnification stereo light microscopy, radiant etching, and evaporative coating with gold or carbon. The stage can be tilted from 0° to 45° and rotated a full 360°. It is demonstrated that the air-liquid interface in the lung can be examined and that low-temperature SEM can be used to investigate the shape of alveoli, the patency of the pores of Kohn in the hydrated state, and the shrinkage and distortion of lung with drying.  相似文献   

6.
P. Walther  M. Müller 《Scanning》1997,19(5):343-348
Imaging of fast-frozen samples is the most direct approach for electron microscopy of organic material. It prevents chemical fixation and drying artifacts. Frozen samples can be replicated and imaged in the transmission electron microscope (TEM), or they can be directly visualized in the cryo-scanning electron microscope (cryo-SEM). Double-layer coating combines these two techniques and many of their advantages. With this method, the frozen bulk sample is coated similar to the TEM-replica technique with, for example, a shadow of platinum (at an angle of 45°) and an additional layer of carbon. Then, the sample is cryo-transferred to an SEM equipped with a cold stage and imaged with the material-dependent backscattered electron signal that shows the platinum distribution. With this method, charging artifacts and the effects of beam damage are significantly reduced. Although currently the resolution of the replica technique cannot be surpassed, the method greatly facilitates the processing of brittle, rapidly frozen samples because no replica cleaning is necessary. This makes the method especially suitable for high-pressure frozen samples.  相似文献   

7.
Cultivated cells form a valuable model system for studies on the effects of various preparative protocols for scanning electron microscopy (SEM). The various effects of each preparative step can be followed in detail in the light microscope and no diffusion gradients complicate the fixation and other procedures as in the case of solid tissues. Studies on cultivated cells indicate that the glutaraldehyde component of a glutaraldehyde-based fixative does not contribute to the effective osmotic pressure of the fixative and thus the osmolarity of the buffer, and other components, must be equalized to that of the medium in which the cells grow. Even small deviations from this ideal effective osmotic pressure will result in osmotically induced artefacts. Disturbances of pH and temperature of the cultures prior to and during fixation will result in changes in the appearance of many cellular structures such as microspikes and ruffles. We find that osmium fixation is advisable in most instances for best possible membrane preservation and that even long periods of glutaraldehyde fixation do not compensate for osmium fixation. Dehydration always results in shrinkage. Freeze drying (FD) and critical point drying (CPD) also give rise to shrinkage, the former to a lesser degree than the latter. A gold-palladium alloy gives a less granular coating that does gold alone. When cultured cells are studied, a metal thickness of between 5 and 15 nm is usually sufficient to give rise to an adequate secondary electron production and to avoid charging even at accelerating voltages of 30–40 kV. Without treatment with OsO4 a thicker metal coating is required.  相似文献   

8.
A method for preparing and handling large, clean, distortion-free cut surfaces through small and delicate tissues for correlated SEM/TEM examination is described. In this method, tissues are fixed according to conventional protocols; however, instead of critical-point-drying after fixation, tissues are first embedded in polyethylene glycol (PEG), a water-soluble waxy solid. Tissue blocks are easily oriented and sectioned to the desired regions, immersed in a solvent to remove PEG, critical-point-dried, and examined with an SEM. The same tissue blocks can be reworked for TEM by immersing in propylene oxide and embedding in an epoxy resin.  相似文献   

9.
The nanostructural response of New Zealand white rabbit Achilles tendons to a fatigue damage model was assessed quantitatively and qualitatively using the endpoint of dose assessments of each tendon from our previous study. The change in mechanical properties was assessed concurrently with nanostructural change in the same non-viable intact tendon. Atomic force microscopy was used to study the elongation of D-periodicities, and the changes were compared both within the same fibril bundle and between fibril bundles. D-periodicities increased due to both increased strain and increasing numbers of fatigue cycles. Although no significant difference in D-periodicity lengthening was found between fibril bundles, the lengthening of D-periodicity correlated strongly with the overall tendon mechanical changes. The accurate quantification of fibril elongation in response to macroscopic applied strain assisted in assessing the complex structure–function relationship in Achilles tendons.  相似文献   

10.
Critical point drying (CPD) is a common method of drying biological specimens for scanning electron microscopy (SEM). Drying by evaporation of hexamethyldisilazane (HMDS) has been described as a good alternative. This method, however, is infrequently used. Therefore, we reassessed HMDS drying. Cultured rat hepatic sinusoidal endothelial cells (LEC), possessing fragile fenestrae and sieve plates, were subjected to CPD and HMDS drying and evaluated in the scanning electron microscope, atomic force microscope (AFM) and transmission electron microscope (TEM). We observed no differences between the two methods regarding cellular ultrastructure. In contrast with CPD, HMDS drying takes only a few minutes, less effort, low costs for chemicals and requires no equipment. We conclude that HMDS-dried specimens have equal quality to CPD ones. Furthermore, the method also proved useful for drying whole-mount cells for TEM and AFM.  相似文献   

11.
This study was undertaken with the aim of identifying the different cell types found in human bone marrow by examining their surface morphology. In an attempt to obtain a homogeneous cell population, cells were both fractionated by discontinuous albumin density gradient centrifugation (DADGC) and selectively grown in nutrient agar. Both cell preparations underwent the critical point drying technique before examination under both the scanning electron microscope (SEM) and subsequently the light microscope (LM). When the SEM image of individual cells was compared with the corresponding LM image, it was not easy to identify the different cell types, because of the shrinkage and distortion that occurred during their preparation. The shrinkage observed under the SEM amounted to a 45% reduction in mean cell diameter. This shrinkage was confirmed by comparing the SEM and LM images of the same cell. Although shrinkage occurred throughout the dehydration sequence, critical point drying was responsible for a 25% reduction in mean cell diameter. Furthermore, direct observation under LM of fixed cells drying in air from ethanol, revealed visible contraction of the cell and distortion of the cell membrane. We assume that a similar morphological change occurred during critical point drying. We conclude that the shrinkage and distortion, caused by the dehydration process involved in SEM preparation, severely limit the value of a study of surface morphology by SEM in the identification of the different cell types found in human bone marrow.  相似文献   

12.
The dimensional changes of liver sections during the course of processing with glycol methacrylate (GMA) or with ethanol are described. Tissue processing with ethanol served as a control. During prolonged processing steps (24 h each), linear shrinkage of tissue specimens dehydrated with GMA at room temperature was 13.2%. Subsequent infiltration with GMA resulted in trivial swelling, and polymerization in slight shrinkage (2.3%). In comparison, processing with cold GMA resulted in shrinkage during dehydration (about 10.8%), a slight swelling in pure GMA, followed by shrinkage during polymerization (2.2%). Short routine processing schedules resulted in similar shrinkage/swelling patterns, although precise values differed slightly. In all experiments, ethanolic dehydration resulted in smaller dimensional tissue changes than did GMA dehydration. The dimensional changes of tissue sections during stretching on water, mounting and drying compensated for the major part of the shrinkage manifested during processing.  相似文献   

13.
Bacterial sample preparation is crucial for its observation by scanning electron microscopy (SEM). However, the current polylysine (PLL) method leads to bacterial morphological changes. To overcome this problem, we employed chitosan (CS) to coat coverslips to prepare bacteria for SEM and compared it with the PLL method. Coverslips coated with 0.025% (w/v) CS showed satisfactory bacterial binding ability. Within 30 min of binding time, the number of bacteria on CS-coated and PLL-coated coverslips exhibited no differences. Four bacteria strains were employed to compare the differences in SEM images between the two methods. Most of the bacteria showed irregular surface or sticky substances after settling on PLL-coated coverslips, while bacteria with clear surface texture were observed on CS-coated coverslips. Transmission electron microscopy (TEM) images showed deformed bacterial envelope on PLL-coated coverslips; meanwhile, similar intact envelope was observed from the bacteria on CS-coated coverslips and the bacteria without any treatment. The TEM results verified the morphological differences of SEM between the two methods. Except for morphology, the length of the rod-shaped bacteria was longer on CS-coated coverslips than that on PLL-coated coverslips, less shrinkage of the sample was observed, and CS could preserve the length of the rod-shaped bacteria better than PLL in its preparation for SEM. It is demonstrated that the low-cost CS could be utilized in bacterial preparation for SEM to acquire preferable images. Bacterial suspension with optical density at 600 nm of about 0.5, deposited on 0.025% CS-coated coverslips for 30 min, and followed by routine fixation, dehydration, and drying are optimal parameters.  相似文献   

14.
The utilization of tannic acid and guanidine hydrochloride as mordants for better osmium binding has been shown to serve as an excellent alternative to metal coating of organ tissue specimens for scanning electron microscopy (SEM). The present report describes the GTGO procedure, a modification of the TAO technique introduced by Murakami et al. (1977, 1978), which we have found successful for the preparation of air dried peripheral blood leucocytes for SEM studies. Air dried, GTGO-treated leucocytes show excellent preservation of surface features with minimal cell shrinkage. When critical point dried, GTGO-treated cells are examined, they also show less shrinkage than cells prepared with standard glutaraldehyde fixation and critical point drying. The potential application of this air drying procedure (GTGO-AD) to other soft biological specimens is currently under investigation. This technique is recommended as a new and effective air drying procedure for the successful preparation of cells for SEM.  相似文献   

15.
The critical point drying method of preparing samples for scanning electron microscopy is associated with a variable amount of specimen shrinkage. We studied the causes of this phenomenon is isolated mouse hepatocyte nuclei and in human erythrocytes and found that the critical point drying process itself caused most of the shrinkage that we observed (a 25-30% reduction in diameter in both specimens). Glutaraldehyde fixation and ethanol dehydration caused only minimal size reduction, prior to critical point drying. Substitution of an inert (ethylene glycol-ethylene glycol monethyl ether) dehydration technique did not alter the final result. Previous studies in our laboratory using high resolution SEM and correlative transmission microscopy of isolated nuclei have demonstrated that the shrinkage represents a miniaturization of the organelles in which all structural components retain their usual relationships.  相似文献   

16.
Monolayers of PtK-1 and HeLa cells grown on glass or plastic supports are extremely susceptible to lacerations, e.g., splits and cracks caused mainly by shrinkage when prepared for scanning electron microscopy (SEM). We find that a four-step fixation procedure including glutaraldehyde, OsO4, tannic acid, and uranylacetate application, in combination with critical point drying, drastically reduces these structural damages. In addition, the conductivity of the specimens is enhanced, so that they can be investigated without gold coating. Transmission electron microscopy (TEM) investigation of perpendicular sections in the area of lacerations provides evidence that the subcortical cytoskeletal elements are of crucial importance in maintaining cell membrane stability during the preparations. Our relatively quick and simple procedure results in an improved structural appearance of the cells.  相似文献   

17.
The loss of 14C-ethanolamine- and 3H-choline-labelled phospholipids from rat liver during preparation for electron microscopy by some less frequently used processing methods has been examined. Permanganate and formaldehyde-potassium dichromate fixation followed by Araldite embedding were investigated and five procedures involving embedding in water-miscible methacrylates (GMA). These procedures included a conventional method of dehydration and embedding in GMA, a low-temperature GMA embedding method, dehydration with ethylene glycol, freeze drying and freeze substitution. These results are compared with those obtained after conventional tissue preparation (presented previously, Cope & Williams, 1969). Formaldehyde-potassium dichromate compared favourably with the conventional procedures for the preservation of both phosphatides, especially phosphatidyl ethanolamine. Permanganate fixation was much less effective. Severe loss of both phosphatides occured after freeze drying and freeze substitution in glutaraldehyde-alcohol. GMA is shown to be a more potent phospholipid solvent than ethanol under the conditions employed. Low-temperature embedding reduced the loss of phosphatidyl choline during embedding. Results obtained by scintillation counting were confirmed by grain counts on thick-section autoradiographs. No direct relationship between extraction and the electron-microscopic appearance of membranes was discernible. It is believed that membrane prominence is largely dependent upon the electron density of the surrounding cytoplasm rather than on the degree of phospholipid extraction.  相似文献   

18.
Immunocytochemical reactions on biological specimens depend on many factors, the most crucial one being the maintenance of antigenicity. Antigens are vulnerable at each stage during preparation for electron microscopy. One of the least traumatic methods of preparing biological tissues for post‐embedding immunolabelling includes the following steps: (1) physical stabilization of the native biological material by rapid freezing (cryofixation) and keeping the immobilized biological sample at low temperature, thereby avoiding any movements of water, ions and macromolecules; (2) dehydrating the frozen biological material by freeze‐drying at low temperature; (3) embedding of the dehydrated specimen. Here we show that embedding of chemically unfixed dendritic cells in Spurr's resin after cryofixation and freeze‐drying enables the conservation of fine ultrastructure without cell distortion or shrinkage. Furthermore, we demonstrate the feasibility of protein localization in ultrathin sections by immunolabelling of the major histocompatibility class II molecules.  相似文献   

19.
In order to examine histological sections of the rat vomeronasal epithelium with the atomic force microscope (AFM), we developed an electron beam etching method that improves the resolution of AFM images. This method results in AFM images comparable to those obtained with the transmission electron microscope (TEM). Ultrathin tissue sections embedded in epoxy resin were observed before and after the treatment with electron beam radiation. Before electron beam treatment, epithelial structures such as the microvilli surface, dendritic processes, the supporting cell layers and the neuronal cell layers were all visible using the AFM. However, only a few subcellular structures could also be resolved. The AFM images were not as clear as those obtained with the TEM. After electron beam treatment, however, the resolution of AFM images was greatly improved. Most of the subcellular structures observed in TEM images, including the inner membrane of mitochondria, ciliary-structure precursor body, junctional complexes between the neurons and supporting cells, and individual microvilli were now visible in the AFM images. The electron beam treatment appeared to melt the embedding resin, bringing subcellular structures into high relief. The result of this study suggests that electron beam etching of histological samples may provide a new method for the study of subcellular structure using the AFM.  相似文献   

20.
Cross-linked dextran beads provide an excellent surface for tissue-cultured cell monolayers, and can be processed for transmission (TEM) and scanning (SEM) electron microscopy, as well as light microscopy (LM). Cells are grown to confluency on the surface of the microcarriers, where at any point aliquots can be removed and experimentally treated as desired (e.g. immunocytochemistry) providing a representative sample. Sample preparation for TEM follows standard procedures for any cell monolayer, but infiltration times must be at least doubled to allow penetration of the beads. The polymerized blocks can then be sectioned for TEM or LM with no additional steps required. SEM sample preparation involves attaching the fixed bead/cell suspension to a glass coverslip with poly-1-lysine, dehydration, critical point drying, and coating for conductivity. The fixed and dried sample can also be attached directly to the SEM stub as free beads and subsequently gold coated. These beads provide (1) an increased surface area of cells visible per area of thin section, (2) eliminates the careful orientation required for flat substrate methods of embedding, (3) decreases the amount of sample manipulation in the forms of re-embedding and gluing, and (4) decreases the amount of drying artifact seen as cracking in SEM monolayer preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号