首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
同位素稀释-α能谱法测定水中微量铀及~(234)U/~(238)U比值   总被引:1,自引:0,他引:1  
测定了铀、钍、镤和铁于不同介质中在CL-5209萃淋树脂上的分配系数,拟定出分离这些元素的方法,建立起同位素稀释-α能谱同时测定水样中微量铀和~(234)U/~(238)U比值的新方法。 水样用硝酸酸化至pH~1,加入~(232)U示踪剂后,放置过夜,让铀同位素交换达到平衡。加入三氯化铁溶液,煮沸15分钟。加氨水至pH~8,使铀和氢氧化铁共沉淀。澄清后过滤。  相似文献   

2.
一、前言由于U(IV)-U(VI)同位素交换体系具有相当大的同位素效应和很好的稳定性,并且容易实现两相回流,这对于分离U同位素的工业应用都是十分有利的。但是,U(IV)-U(VI)同位素交换反应速度非常慢,常温下H~+浓度为1.0—4.0 mol/l时,速度常数为1.0×10~(-4)l~2/mol·s。因此要用U(IV)-U(VI)交换体系浓缩铀同位素,必须研究U(IV)-U(VI)交换反应动力学,找到加快交换反应的方法。  相似文献   

3.
离子交换色谱法分离铀同位素   总被引:1,自引:0,他引:1  
离子交换色谱法分离铀同位素与一般化学交换法一样都包括以下三个过程的循环: 1.两种铀化合物的形成; 2.在这两种化合物中间~(235)U和~(233)U 达到同位素交换平衡,并实现同位素的不等机率分配; 3.达到同位素交换平衡的两种铀化合物的两相分离。离子交换色谱法分离铀同位素与一般化学交换法不同之处仅在于两相分离过程是在一种特殊的离子交换色谱体系中进行的。这种色谱柱上的一个塔板相当于一个分离单级。由此可见,离子交换色谱法分离铀同位素仅是化学交换法的一种特殊类型。因此,本文在介绍离子交换法时,常常涉及到一般化学交换法的问题。  相似文献   

4.
研究动态     
中国原子能科学研究院放射化学所同位素分离组在离子交换色谱法分离铀同位素的基础研究方面最近取得突破性进展。该研究组采用的一个分离体系,是使原料铀溶液在2.5h内通过约1m长的色层柱,在后沿界面上得到了丰度R=[~(235)U]/[~(238)U]=0.008180的浓缩样品,比料液(天然铀)丰度0.007280提高12%以上。日本在离子交换色谱法分离铀同位素这一  相似文献   

5.
低浓缩铀是核电站动力堆的燃料。但是因目前生产低浓铀的扩散法和离心法的能耗或设备费用过高,而影响了核电的经济效益。因此,人们试图找到一种更廉价地生产低浓铀的方法。近十几年来,人们发现U(Ⅳ)-U(Ⅵ)和U(Ⅲ)-U(Ⅳ)电子交换反应具有相当大的同位素效应,并已投入相当多的人力进行了基础研究和应用研究。与此同时也发现大环化合物与其它元素生成的配位化合物比通常的配体交换反应的同位索效应大得多,对于铀,可望找到合适的、具有较大同位素效应的大环化合物。  相似文献   

6.
本文利用色带迁移法研究了树脂交联度、树脂粒度、树脂床温度、带迁移速度(流速)、以及推移剂的性质与组成等因素对铀同位素分离的影响,给出了铀同位素分离的较佳条件,得到了比以往U(Ⅵ)络合物体系较好的分离结果,并对结果进行了一定的讨论。  相似文献   

7.
铀是自然界中天然存在的最重的放射性元素,其在地壳中广泛分布。随着质谱测量铀同位素比的技术精度的提高,人们逐渐认识到自然环境中铀同位素也具有分馏作用。本文主要对近年来有关铀同位素分馏的研究成果进行了综述,介绍了自然界中铀的地球化学行为和铀同位素的分析方法。自然界铀同位素分馏与核体积效应有关,核体积效应导致重铀同位素更倾向于富集在还原物相当中,U(Ⅵ)还原为U(Ⅳ)的δ^(238) U(δ^(238) U为研究样品同位素组成相对于标准物质的千分偏差)变化达到了1.0‰以上。铀同位素组成对氧化-还原环境较敏感的特性揭示了铀在氧化还原交换反应中的同位素分馏机理,形成于不同氧化-还原环境的铀矿床的δ^(238) U存在明显的差异,实验研究表明生物还原作用引起的铀同位素分馏程度更大。因此,铀同位素分馏在反演铀矿成矿环境以及地浸采铀矿山等放射性污染区域的核素迁移转化机理与环境修复的研究中具有重要的示踪作用。最后,提出了铀同位素分馏研究进一步的发展方向,以及在地浸采铀矿山地下水环境修复和其它地球科学领域的应用前景。  相似文献   

8.
自然界有实际意义的铀同位素只有三个,即铀-238、铀-235和铀-234。其相应丰度为:99.27%、0.714%和0.0055%。这三者相互的放射性比值一直被认为是恒定的。1053年恰洛夫和契尔登采夫,通过试验研究,第一次提出了天然铀同位素之间的比值(主要是指~(234)U/~(238)U=R)是变化的。自此以后,人们在这个方向上做了大量的试验测定工作和理论研究。目前,天然铀同位素比值(R)方法已广泛而成功地在许多领域中得到应用。下面我们仅介绍比值法在铀矿地质中的若干应用,供参考。  相似文献   

9.
本文提出了全回流解析法以研究U(Ⅵ)-U(Ⅳ)氧化还原阳离子排代色谱中的多元交换平衡,推导出各竞争离子的交换平衡式。在此基础上,导出了ρ-ρ关系式:ρ=(1-φ)/(1/ρ)+φ。ρ和ρ分别为固、液相中U(Ⅵ)对U(Ⅳ)摩尔浓度比,它们是决定铀同位素分离系数的主要参数。φ是有效排代率β的函数:φ=(1/2)M_(F·(111))(1-β)/M_(U(Ⅵ))。从ρ-ρ式可预见,不可能找到使ρ→∞而同时ρ→0的理想实验条件。  相似文献   

10.
在不变价同位素分离体系中,大环聚醚体系具有比其它体系大得多的同位素效应。这已为Li,Na,Ca同位素的分离结果所证实。目前,大环聚醚分离Li同位素的研究工作正在向实用阶段发展,而大环聚醚分离更重同位素的研究却未见报道。同时,随着核电的发展,对动力堆用低浓铀燃料的需求不断增加。在生产低浓铀的各种方法中,化学法有其独特的优点和潜在的竞争性,不变价态的化学交换体系又具有能耗小的优点。为此,本文研究了不变价态体系中二环己基-18-冠-6、环己基-15-冠-5对~(140)Ce/~(142)Ce的分离及二环己基-18-冠-6对~(235)U/~(238)U的分离。  相似文献   

11.
用中子活化分析法测定~(238)U/~(235)U同位素丰度比   总被引:3,自引:0,他引:3  
本文论述了用中子活化分析法测定含微量铀的样品中~(238)U/~(235)U同位素丰度比的原理及方法。样品在反应堆中接受短时间照射后,用Ge(Li)探头或高纯锗探头-多道能谱分析仪-计算机系统测量射线的能谱.可以分辨出~(238)U和~(235)U的许多监测峰。利用这两种监测峰计数之比与这两种同位素丰度比成正比的关系,分析铀的同位素丰度比,在~(235)U丰度为0.6%-18%范围时精密度为1%-2%,在贫化铀和18%-60%丰度~(235)U时,精密度为2%-3%。  相似文献   

12.
一、引言 放射性铀、钍同位素在环保领域、水文地质中判断找矿远景,考古中测定古生物的年代得到广泛应用。 对铀、钍与其他干扰元素分离以及铀、钍互相分离,一般方法较复杂,需对铀、钍进行多次纯化。本文采用大孔型树脂X-5(聚二乙烯苯)为支持体,用水溶性小、对铀、钍分离效果好的P_(350)为萃取色层的固定相。将分离后的铀、钍分别电沉积制备成无载体的α面源,用α谱仪测定~(234)U/~(238)U,~(230)Th/~(232)Th的同位素活度比值。 本分离体系对高铀低钍、高钍低铀以及铁含量高的样品,均能得到满意的结果。本方法测定下限水样为1—2μg/1,固体样为5μg/g。10μg以上的铀、钍测定误差为±5%。  相似文献   

13.
本文研究了U(Ⅲ)-U(Ⅳ)在7.0mol/l HCl介质中及在U(Ⅲ)-7.0mol/l HCI-U(Ⅳ)-50%TBP-煤油和U(Ⅲ)-7.0mol/l HCl-U(Ⅳ)-50%TBP-二甲苯体系中的同位素交换过程,测得上述体系的单级分离因数分别为1.0026,1.0031和1.0030,从而证实了P.Delvalle的1.0025-1.0030的实验结果;确认了用液态Zn-Hg齐制备U(Ⅲ)是快速、有效的方法;初步探索了用U(Ⅲ)-U(Ⅳ)交换过程浓缩~(235)U的合适体系。  相似文献   

14.
文章研究了30%TBP-煤油体系中U(VI)的光化学还原以及有机相中HNO_2含量、温度对光化学过程的影响,并测定了光化学反应后有机相对铀的保留量以及对裂片元素~(95)Zr-~(95)Nb,~(103)Ru和~(153)Gd的萃取性能的影响。按照Purex过程1 B柱工艺进行了光化学还原反萃分离钚的单级试验。结果表明,铀、钚分离效果是满意的,光化学反应对铀在有机相中的保留和对裂片元素的净化没有明显影响。  相似文献   

15.
建立了同位素稀释-多接收电感耦合等离子体质谱法测~(235)U/~(231)Pa原子比得到高浓铀年龄的方法。经过两次TTA萃取-反萃后从母体237 Np中分离得到233Pa稀释剂,Pa中去Np的去污因子均在200以上。在用标准物质CRM U900对233Pa稀释剂的浓度进行标定后,分别以233 U、233 Pa作为~(235)U、231 Pa的稀释剂,质谱测得~(235)U/~(231)Pa原子比计算高浓铀年龄,采用该法对标准物质CRM U850进行年龄测量,其结果与参考值的相对偏差为1.97%。该法可用于核法证与核保障监督中的高浓铀年龄测定。  相似文献   

16.
TIMS测定模拟1AF料液中铀钚同位素组分   总被引:2,自引:1,他引:1  
采用溶剂萃取/离子交换分离-热表面电离质谱法,对模拟1AF料液中铀钚同位素组分测定技术进行了研究。通过对化学分离条件、仪器测量参数、信号强度、各种干扰等测定条件的研究和选择,实现了铀、钚同位素组分的精密测定。在选定的条件下,测定了模拟1AF料液中的铀钚同位素,主要同位素235U和239Pu测定精密度(sr)均优于0.05%。  相似文献   

17.
自从T.I.Taylor和H.C.Urey首次应用化学交换法分离锂同位素以来,对离子交换色层分离同位素的理论和技术进行了许多研究和改进,F,H.Spedding等人应用带迁移法成功地分离了~(14)N和~(15)N。我们采用这一方法,对铀酰盐水溶液和磺酸型阳离子交换树脂间的同位素交换反应、同位素效应的叠加作用等进行了研究和实验,并对造成铀同位素  相似文献   

18.
~(234)U/~(238)U比值在地学中有着广泛的应用前景,本文扼要地介绍了近年来国外铀同位素~(234)U/~(238)U)比值分析测试技术的主要进展.尤其是液体闪烁计数技术与计算机技术的联用,既是对传统的α能谱技术的挑战,也是液体闪烁技术扩大应用及其本身发展的一个佐证.  相似文献   

19.
U(BH_4)_4是一种挥发性较大的铀化合物,它在60℃时的蒸气压约为4mmHg,它在干燥空气中稳定,而150°以上则很容易分解。这种特性引起了激光分离同位素工作者的兴趣,当采用适当频率激光器辐照D(BH_4)_4时,可使一种铀同位素的分子激发,再用另一激光器使激发分子分解。而未分解的分子则可再升华,从而达到同位素分离的目的。U(BH_4)_4的光谱性质已被很多人所研究,但其合成方法还一直沿用早先施莱辛格(H.I.Schlesinger)等人所采用的方法,系将过量的硼氢化铝与四氟化铀作用制得。其反应式表示如下:  相似文献   

20.
为解决U(Ⅵ)-U(Ⅳ)排代色谱中的多元交换平衡,本文提出了全回流解析法。其理论根据是:在稳定铀区段内,任一竞争离子必以一定的形式作全回流,否则区段不可能达到稳定。 以阳床-Ti(Ⅲ)-FeCl_3-HX体系为研究对象,解析了铀区段内U(Ⅵ)、U(Ⅳ)、Fe(Ⅱ)、Ti(Ⅳ)及H~ 的全回流,求得了它们各自的交换平衡分配式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号