首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
In this study,the dependences of yttria content,porosity and grain size on the thermal properties of Y2O3 stabilized ZrO2 (YSZ) ceramics were investigated.YSZ ceramics were synthesized by the solid state reaction method.The phase,microstructure and thermal properties of YSZ ceramics were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),differential scanning calorimetry (DSC) and laser-flash apparatus (LFA),respectively.The results indicated that the specific heat capacity of YSZ increased with the increase of temperature and decreased with the increase of yttria content.As the temperature increased,the thermal diffusivity and conductivity of YSZ ceramics were decreased,whereas their variations for 16YSZ,18YSZ and 20YSZ were much less pronounced than those for 12YSZ and 14YSZ.At a given temperature,the thermal conductivity of YSZ was opposite to yttria content.The thermal conductivity of YSZ ceramics almost linearly decreased with the increase of porosity.In addition,the grain size also had a great influence on the thermal conductivity.  相似文献   

5.
以Zr4 和Y3 的氢氧化物为水热前驱体,氢氧化钾和碳酸钾作矿化剂,采用水热法制备氧化钇稳定氧化锆(YSZ)纳米粉末,研究水热处理温度、pH值和矿化剂浓度对水热合成纳米氧化锆晶型结构的影响.实验结果表明:高的反应温度有利于立方氧化锆的生成,矿化剂的加入对合成产物晶化度和晶粒大小有显著的影响,体系pH值会影响水热前驱体的结构,进而影响水热合成纳米氧化锆的晶型.在Y2O3掺杂量比较大的时候,pH值的变化对氧化锆晶型的影响不明显,晶型由掺杂量决定.  相似文献   

6.
The phase transformation from the high temperature tetragonal phase to the low temperature monoclinic phase of zirconia had been long considered to be a typical athermal martensitic transformation until it was recently identified to be a fast isothermal transformation. The isothermal nature becomes more apparent when a stabilizing oxide, such as yttria, is doped, by which the transformation temperature is reduced and accordingly the transformation rate becomes low.Thus it becomes easy to experimentally establish a C-curve nature in a TTT (Time-Temperature-Transformation) diagram. The C-curve approaches that of well known isothermal transformation of Y-TZP (Yttria Doped Tetragonal Zirconia Polycrystals), which typically contains 3mol% of Y2O3.In principle, an isothermal transformation can be suppressed by a rapid cooling so that the cooling curve avoids intersecting the C-curve in TTT diagram. Y-TZP is the case, where the stability of the metastable tetragonal phase is relatively high and thus the tetragonal phase persists even at the liquid nitrogen temperature. On the other hand, the high temperature tetragonal phase of pure zirconia can never be quenched-in at room temperature by a rapid cooling; instead it always turns into monoclinic phase at room temperature. This suggests the occurrence of an athermal transformation after escaping the isothermal transformation, provided the cooling rate was fast enough to suppress the isothermal transformation. Thus, with an intermediate yttria composition, it would be possible to obtain the tetragonal phase which is not only metastable at room temperature but athermally transforms into the monoclinic phase by subzero cooling.The objective of the present work is to show that, with a certain range of yttria content, the tetragonal phase can be quenched in at room temperature and undergoes isothermal transformation and athermal transformation depending on being heated at a moderate temperature or under-cooled below room temperature. Because both of the product phases are essentially the same monoclinic phase, both transformations are regarded as martensitic transformation, i. e. isothermal and athermal martensite. In some steels such as Fe-Mn-Ni and Fe-Ni-C, the occurrence of both isothermal and athermal martensitic transformations has been reported. However, in these cases, the isothermal transformation occurs at temperatures slightly above the Ms (Martensite start) temperatures, and thus these transformations are considered to conform the same C-curve. On the other hand, the Ms temperature of the present material is well below the C-curve, which suggests that completely different mechanisms are controlling the kinetics of these two modes of transformations. Other aspects on these transformations are also to be reported..  相似文献   

7.
The phase transformation from the high temperature tetragonal phase to the low temperature monoclinic phase of zirconia had been long considered to be a typical athermal martensitic transformation until it was recently identified to be a fast isothermal transformation. The isothermal nature becomes more apparent when a stabilizing oxide, such as yttria, is doped, by which the transformation temperature is reduced and accordingly the transformation rate becomes low.Thus it becomes easy to experimentally establish a C-curve nature in a TTT (Time-Temperature-Transformation) diagram. The C-curve approaches that of well known isothermal transformation of Y-TZP (Yttria Doped Tetragonal Zirconia Polycrystals), which typically contains 3mol% of Y2O3. In principle, an isothermal transformation can be suppressed by a rapid cooling so that the cooling curve avoids intersecting the C-curve in TTT diagram. Y-TZP is the case, where the stability of the metastable tetragonal phase is relatively high and thus the tetragonal phase persists even at the liquid nitrogen temperature. On the other hand, the high temperature tetragonal phase of pure zirconia can never be quenched-in at room temperature by a rapid cooling; instead it always turns into monoclinic phase at room temperature. This suggests the occurrence of an athermal transformation after escaping the isothermal transformation, provided the cooling rate was fast enough to suppress the isothermal transformation. Thus, with an intermediate yttria composition, it would be possible to obtain the tetragonal phase which is not only metastable at room temperature but athermally transforms into the monoclinic phase by subzero cooling. The objective of the present work is to show that, with a certain range of yttria content, the tetragonal phase can be quenched in at room temperature and undergoes isothermal transformation and athermal transformation depending on being heated at a moderate temperature or under-cooied below room temperature. Because both of the product phases are essentially the same monoclinic phase, both transformations are regarded as martensitic transformation, i. e. isothermal and athermal martensite. In some steels such as Fe-Mn-Ni and Fe-Ni-C, the occurrence of both isothermal and alhermal martensitic transformations has been reported. However, in these cases, the isothermal transformation occurs at temperatures slightly above the Ms (Martensite start) temperatures, and thus these transformations are considered to conform the same C-curve. On the other hand, the Ms temperature of the present material is well below the C-curve, which suggests that completely different mechanisms are controlling the kinetics of these two modes of transformations. Other aspects on these transformations are also to be reported..  相似文献   

8.
9.
两步水热法制备超细纳米颗粒钇稳定氧化锆   总被引:2,自引:0,他引:2  
采用两步水热法制备钇稳定氧化锆(YSZ)的超细纳米颗粒.利用X射线衍射仪、透射电子显微镜研究pH值以及分散剂和阳离子浓度对YSZ粉体的相组成、相结构和晶粒大小的影响.结果表明,两步水热法制得的YSZ粉体具有立方相结构,平均晶粒尺寸约为6nm;pH值越大,越利于立方相的生成,pH为12时,YSZ粉体为纯立方相;无水乙醇作为分散剂,可以有效地减少粉体的团聚;阳离子浓度过高时(2 mol/L),不利于立方相生成,在阳离子浓度适当(约0.02~0.05 mol/L)的前提下,稍大的阳离子浓度得到的粉体粒径较小,团聚较少,最佳的阳离子浓度为0.05 mol/L.  相似文献   

10.
11.
We reported the development of a Ф100 cm growth apparatus for skull melting growth of yttria-stabilized cubic zirconia(YSZ) crystals and more than 1000 kg crystals have been grown in the furnace each time.The growth conditions were optimized and the structure of the as-grown crystals was characterized by X-ray diffraction.The transmittance of 15 mol.% yttria-stabilized cubic zirconia crystal was nearly 80% in the range of 400-1600 nm.The refractive indices were measured and fitted the Sellmeier equation whi...  相似文献   

12.
采用超音速等离子喷涂和普通大气等离子喷涂制备了微米级氧化钇稳定氧化锆(yttria-stabilized zirconia,YSZ)基热障涂层,使用SprayWatch-2i系统测试喷涂过程中粒子飞行速度及表面温度,通过扫描电镜和图像分析技术表征涂层微观结构,利用压痕法测试了断裂韧性和弹性模量,采用基于分形思想的面积-周长幂率定量表征两种工艺条件下孔隙不规则形态,并研究了分形维数对涂层断裂韧性的影响。结果表明:超音速等离子喷涂和普通大气等离子喷涂YSZ涂层孔隙都具有分形特性;超音速等离子喷涂YSZ涂层分形维数是普通等离子喷涂涂层的1.12倍,孔隙结构更复杂,涂层断裂韧性更高。  相似文献   

13.
Tensile tests were performed on specimens of high purity 3Y-TZP (tetragonal ZrO2 stabilized with ∼ 3 mol% of Y2O3) at temperatures from 1623 to 1803 K. Superplastic-like flow was achieved with elongations of up to >400%. The experiments show that the stress exponent, n, is ∼ 3.0–3.4 and the activation energy for flow, Q, is ∼ 602±20 kJ mol−1. Internal cavities developed in all specimens during flow, and quantitative measurements were taken of the cavity shapes and sizes over a range of experimental conditions. The results demonstrate that there is an increase in the extent of cavitation with (i) decreasing temperature at constant strain rate and (ii) increasing strain rate at constant temperature. The influence of strain rate on cavitation in 3Y-TZP is the opposite of most superplastic metals, and the difference arises because of an inhibition in the diffusion growth process in 3Y-TZP.  相似文献   

14.
《Acta Metallurgica Materialia》1992,40(10):2717-2726
The high-temperature plastic deformation of 6 mol% Y2O3-stabilized ZrO2 polycrystals with grain sizes of 1.8, 3.4 and 6.3 μm has been studied in compression between 1350 and 1450 °C in air at constant strain rate (between 1 × 10−5 and 2 × 10−4s−1) and under constant load (between 5 and 90 MPa). Two mechanical behaviours were observed depending on strain rate or stress levels: grain boundary sliding controlled by cation bulk diffusion, with an activation energy of 560 kJ/mol, and intergranular cavitation without plastic deformation of the grains.  相似文献   

15.
《Acta Metallurgica Materialia》1993,41(10):2845-2853
Creep tests in compression and internal friction experiments have been performed in order to investigate the influences of microstructural parameters such as the grain size and the amount of intergranular glassy phase on the plastic deformation of yttria stabilized tetragonal zirconia polycrystals. The values of the apparent activation energies obtained from creep tests in the low stress regime and those obtained from the internal friction tests are in good agreement. The two techniques appear to be complementary approaches to the study of plastic deformation of fine grained zirconia under low stress. The mechanisms of plastic deformation are discussed in terms of grain boundary sliding models.  相似文献   

16.
The microstructure and deformation characteristics of a fine-grained superelastic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) have been investigated. Both hot indentation and tensile tests were carried out at temperatures between 1273 and 1923K over the strain rate range from 2.7 × 10−5 to 2 × 10−3 s−1. It was found that the material exhibited extensive plasticity at temperatures higher than 1473K; a maximum tensile elongation of over 800% was recorded. Microstructural examination did not indicate the presence of a glassy phase at grain boundaries. Yttrium, however, was found to segregate to the grain boundaries. The microstructure of the Y-TZP was thermally unstable and appreciable grain growth was observed at emperattures higher than 1723 K; the grain growth was enhanced by external stresses, i.e. dynamic grain growth was observed. Grain growth at elevated temperatures resulted in apparent strain rate sensitivity exponents of approximately 0.33 at 1723K. This value decreased with increasing temperature. The grain size-compensated strain rate, however, was found to depend approximately on the square of the flow stress, i.e. to exhibit a true strain sensitivity value of 0.5, which suggests a grain boundary sliding mechanism. Microstructures from samples that were deformed superelastically indicated that grains remained equiaxed; this observation is consistent with a grain boundary sliding mechanism. The activation energy for superplasticity, under the conditions of constant structure, in Y-TZP was calculated to be 720 kJ/mol.  相似文献   

17.
High-performance solid oxide fuel cell(SOFC) is in urgent need of high-quality electrolyte powders with high reactivity and chemical uniformity.Here,8 mol% Y2O3 doped ZrO2(YSZ) nano-powders were synthesized by an improved solid-state reaction method at ambient temperature,and were applied to the fabrication of SOFC electrolytes.YSZ nano-powders show average grain sizes of ~20 nm and high dispersibility,which is comparable with or even better than some other chemi...  相似文献   

18.
Nanostructured yttria partially stabilized zirconia(YSZ) coatings were prepared by atmospheric plasma spraying(APS) using the conglomeration made by zirconia nanoparticle as the raw materials.The measurement methods,which consisted of scanning electron microscopy(SEM),transmission electron microscopy(TEM) and thermal cycling behavior,were used to character the morphology,composition and thermal oxidation behavior of the powder and the coatings.From the results,it was shown that the YSZ coating was the laminar structure,and the elements distribution in the bond and top coat were well-proportioned.The YSZ coatings were composed of fine grains with size ranging from 30 to 110 nm.The laminar layers with columnar grains were surrounded with unmelted parts of the nanostructured powder and some equiaxed grains.In the as-sprayed nanostructured zirconia coatings,there existed pores that were less than 1 μm.The cracks were observed on some of the crystal border.The cyclic oxidation experiment showed that the nanostructured coating had longer thermal cycling lifetime to exhibit the promising thermal cyclic oxidation resistance.The failure of the nanostructured TBC was similar to the failure of conventional APS TBC.  相似文献   

19.
Sessile drop experiments were carried out in order to measure surface tensions and to investigate wetting characteristics of some Ni-based alloys on various ceramic substrates. The liquid-vapor surface tension (γLV) was found to be 1.764 N/m for pure Ni, 1.45 ± 0.11 N/m for Ni-20 pct Cr, 1.29 ± 0.06 N/m for Ni-20 pct Cr-1 pct Al, and 1.31 ± 0.09 N/m for Ni-20 pct Cr-4 pct Al. The commercial alloys UD520, UD718, UD720, and WASPALOY* showed non-wetting behavior on zirconia but wetting tendency on alumina substrates. Ni-20 pct Cr-1 pct Al showed non-wetting behavior on alumina, hafnia, and yttria substrates whereas Ni-20 pct Cr and Ni-20 pct Cr-4 pct Al were observed to be non-wetting on hafnia but wetting on yttria and alumina substrates. All the systems that exhibited wetting behavior were found to be non-wetting in the beginning; however, wet-ting improved with time. The wetting characteristics were apparently related to impurification of droplets during measurements, which is reflected in the solidification structure, rather than to the presence of oxides on the surface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号