首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sintering kinetics of α-Al2O3 powder are reviewed in this paper. The initial sintering of α-Al2O3 micropowder and α-Al2O3 nanopowder is all controlled by grain boundary diffusion. The sintering kinetics dominate up to a relative density of 0.77, where the coarsening kinetics dominate during further densification. Herring's scaling law can be used to predict the approximate sintering temperature of α-Al2O3 powder and demonstrates that if the particle size can be reduced to <20 nm, sintering below 1000°C may be possible. ©  相似文献   

2.
γ-Al2O3 and SiO2 supported Co catalysts, with varying amounts of Ru, were prepared and evaluated for Fischer–Tropsch synthesis (FTS). The composition of Ru for optimum activity was found to be support-dependent. The reducible Co3O4 was high in the region of 0–1.64 wt.% of Ru in Co/SiO2 catalysts. Co/γ-Al2O3 displayed a maximum for reducible Co species at 0.42 wt.% Ru. Segregation of Ru occurred beyond this composition decreasing the extent of reduction. Co/γ-Al2O3 catalysts showed lower activity and olefin selectivity, in spite of higher Co dispersion, than Co/SiO2 catalysts. The catalytic performance depends on the amount of reducible Co species, which again depends upon the optimum content of Ru.  相似文献   

3.
Co-precipitation, impregnation and ultrasonic sol–gel (USG) methods have been used to prepare Cu–Cr–Fe/γ-Al2O3 catalysts, which were further used to synthesize 2-methylpiperazine. The catalysts were characterized by XRD, XPS, TG/DSC, BET, TPR, AAS and TEM. It is found that preparation method can greatly impact the catalytic performance of the catalysts, the Cu–Cr–Fe/γ-Al2O3 catalyst prepared by the ultrasonic sol–gel method proved to be the most active and stable for this reaction. The dispersion and stabilization of Cu0 in the reduced catalysts are attributed to the existence of CuCr2O4 and Fe2O3. A surprising copper migration was detected by XPS analysis for the Cu–Cr–Fe/γ-Al2O3-USG catalyst after the calcination process, which may be crucial to the high activity and stability of this catalyst.  相似文献   

4.
Catalytic conversion of CO2 to liquid fuels has the benefit of reducing CO2 emission. Adsorption and activation of CO2 on the catalyst surface are key steps of the conversion. Herein, we used density functional theory (DFT) slab calculations to study CO2 adsorption and activation over the γ-Al2O3-supported 3d transition metal dimers (M2/γ-Al2O3, M = Sc–Cu). CO2 was found to adsorb on M2/γ-Al2O3 negatively charged and in a bent configuration, indicating partial activation of CO2. Our results showed that both the metal dimer and the γ-Al2O3 support contribute to the activation of the adsorbed CO2. The presence of a metal dimer enhances the interaction of CO2 with the substrate. Consequently, the adsorption energy of CO2 on M2/γ-Al2O3 is significantly higher than that on the γ-Al2O3 surface without the metal dimer. The decreasing binding strength of CO2 on M2/γ-Al2O3 as M2 changes from Sc2 to Cu2 was attributed to decreasing electron-donation by the supported metal dimers. Hydroxylation of the support surface reduces the amount of charge transferred to CO2 for the same metal dimer and weakens the CO2 chemisorption bonds. Highly dispersed metal particles maintained at a small size are expected to exhibit good activity toward CO2 adsorption and activation.  相似文献   

5.
The influence of CO2 on the deactivation of Co/γ-Al2O3 Fischer–Tropsch (FT) catalyst in CO hydrogenation has been investigated. The presence of CO2 in the feed stream reveals a negative effect on catalyst stability and in the formation of heavy hydrocarbons. The CO2 acts as a mild oxidizing agent on cobalt metal during Fischer–Tropsch synthesis. During FT synthesis on Co/γ-Al2O3 of 70 h, the CO conversion and C5+ selectivity in the presence of CO2 decreased more significantly than in the absence of CO2. CO2 is found to be responsible for the partial oxidation of surface cobalt metal at FT synthesis environment with the co-existence of generated water.  相似文献   

6.
Nano-scaled χ-Al2O3 powders with d50 mean particle sizes from 17 to 314 nm were prepared to investigate the size effect on their phase transformation. Structural properties and crystallization behavior as a function of thermal treatments of various-sized χ-Al2O3 particles were examined by DTA, XRD and TEM characterizations. It was confirmed that the decrease of particle size allows for stable α-Al2O3 formation at relatively low temperature. Furthermore, the phase transformation route of χ-Al2O3 to α-Al2O3 was also modified due to the decrease of particle size. A critical size of χ-Al2O3 that determines the phase transformation behavior was found to be around 40 nm. For particles larger than 40 nm, a transition phase of κ-Al2O3 is formed before obtaining final α-Al2O3 phase. Nevertheless, for those smaller than the critical size, starting χ-Al2O3 particles have to grow to 40 nm and then directly transform to α-Al2O3 bypassing κ-Al2O3 at a temperature as low as 1050 °C.  相似文献   

7.
A Pt/γ-Al2O3 catalyst was tested in simultaneous hydrodesulfurization (HDS) of dibenzothiophene and hydrodearomatization (HDA) of naphthalene reactions. Samples of it were subjected to different pretreatments: reduction, reduction–sulfidation, sulfidation with pure H2S and non-activation. The reduced catalyst presented the best performance, even comparable to that of Co(Ni)Mo catalysts. All catalyst samples were selective to the HDS reaction over HDA, and to the direct desulfurization pathway of dibenzothiophene HDS over the hydrogenation reaction pathway of HDS. The effect of H2S partial pressure on the functionalities of the reduced Pt/γ-Al2O3 catalyst was studied. The results showed that an increase in H2S partial pressure does not cause poisoning, but an inhibition effect, without changing the catalyst selectivity. Accordingly, the activity trends were ascribed to adsorption differences between the different reactive molecules over the same catalytic active site. TPR characterization along with a thermodynamics analysis showed that the active phase of reduced Pt/γ-Al2O3 is constituted by Pt0 particles. However, presulfidation of the catalyst leads to a mixture of PtS and Pt0 which has a negative effect on the catalytic performance without changing catalyst functionalities.  相似文献   

8.
The hydrodesulfurization (HDS) of benzothiophene (BT) and dihydrobenzothiophene (DHBT) was studied over a sulfided Mo/γ-Al2O3 catalyst at 5 MPa and 280 and 300 °C. In the absence of H2S, benzothiophene reacted by hydrogenation to dihydrobenzothiophene and by hydrogenolysis to ethylbenzene (EB), and dihydrobenzothiophene reacted by hydrogenolysis to ethylbenzene. H2S inhibited both hydrogenation and hydrogenolysis, but the latter much more strongly. The reverse inhibition was observed for 2-methylpiperidine (MPi). In the presence of H2S and/or 2-methylpiperidine, dihydrobenzothiophene reacted to ethylbenzene as well as by total hydrogenation to octahydrobenzothiophene, and on to ethylcyclohexenes and ethylcyclohexane. Dihydrobenzothiophene did not react back to benzothiophene at and below 300 °C, while the equivalent tetrahydrodibenzothiophene reacted fast to an equilibrium with tetrahydrodibenzothiophene, due to stabilization of the vinylic bond by the alkyl groups. The observed products and kinetic results were explained by a model in which the CS bonds were mainly broken by hydrogenolysis.  相似文献   

9.
TiC whiskers have been synthesized via a carbothermal reduction technique in an α-Al2O3 matrix within a temperature range of 1380–1580 °C in an argon atmosphere. The raw materials consist of TiO2, carbon, nickel and NaCl. Various mixing procedures and reaction temperatures were used. The yield of the whiskers is mainly dependent on the mixing procedures and the morphology of the synthesized composite powders is mainly dependent on the synthesis temperatures. The majority of the synthesized whiskers display an ideal aspect ratio of 10–30 with a diameter of 1–3 μm. No significant influence on the growth of the TiC whiskers by the present of the Al2O3 matrix powder can be noted.  相似文献   

10.
TiO2-Al2O3 binary oxide supports were obtained by sol–gel methods from Tetra-n-butyl-titanate and pseudoboehmite/aluminium chloride resources. The typical physico-chemical properties of NiW/TiO2-Al2O3 catalysts with different TiO2 loadings and their supports were characterized by means of BET, XRD and UV–vis DRS, etc. The BET results indicated that the specific surface areas of NiW/TiO2-Al2O3 catalysts were as higher as that over pure γ-Al2O3 support, and the pore diameters were also large. The XRD and UV–vis DRS analyzing results showed that the Ti-containing supported catalysts existed as anatase TiO2 species and the incorporation of TiO2 could adjust the interaction between support and active metal, and impelled the higher reducibility of tungsten. The hydrodesulphurization (HDS) performance of the series catalysts were evaluated with diesel feedstock in a micro-reactor unit, and the HDS results showed that NiW/TiO2-Al2O3 catalysts exhibited higher activities of ultra deep hydrodesulphurization of diesel oil than that of NiW/Al2O3 catalyst. The optimal TiO2 content of NiW/TiO2-Al2O3 catalysts was about 15 m%, and the corresponding HDS efficiency could reach to 100%. The sulphur contents of diesel products over NiW/TiO2-Al2O3 (from pseudoboehmite/AlCl3) catalysts with suitable TiO2 content could be less than 15 ppmw, which met the sulphur regulation of Euro IV specification of ultra clean diesel fuel.  相似文献   

11.
2-Propanol and molecular H2 (in methanol (MeOH) and MeOH–water) were examined as reducing agents for the liquid phase hydrodechlorination (HDC) of dioxins over 2 wt.% Pd/γ-Al2O3. Different amounts of NaOH were added to the reaction mixtures. The 2-propanol and H2(g)/MeOH systems presented similar HDC activity. Notwithstanding, Pd sintering and graphitic carbon directly bonded to Pd on catalyst surface was observed on samples used with H2(g)/MeOH. The addition of water to H2(g)/MeOH decreased Pd sintering and favored dissolution of sodium compounds. However, dioxin degradation efficiency diminished. By contrast, 2-propanol acting both as reducing agent and solvent provided hydrogen to the HDC reaction, avoided metal sintering and Pd–C formation. Besides, almost complete dioxin degradation under mild reaction conditions was obtained. Kinetic experiments of dioxin HDC with 2-propanol showed a maximum net reaction rate and turnover frequency (TOF) for a given initial concentration of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). After that value, both reaction rate and TOF decreased. On the other hand, reaction rates and TOFs of dioxin-like polychlorinated biphenyls (DL-PCBs) linearly increased with concentration.  相似文献   

12.
Catalytic selective epoxidation of mixed biolefins with air over nanosized Co3O4 catalyst under mild ultrasonic conditions has been first reported. When the styrene/α-pinene molar ratio was 1:5, the highest conversions were, respectively, reached 81.8 mol% for styrene and 76.1 mol% for α-pinene, with the epoxidation selectivity of 84.1% (styrene oxide) and 94.6% (α-pinene oxide), notably higher than those of the conventional reactions under magnetic stirring. An intermolecular electron-transfer phenomenon between conjugated styrene and electron-rich α-pinene was revealed by UV–vis spectra, which was considerably important for the enhancement of reactivities of both olefinic molecules observed experimentally.  相似文献   

13.
The effects of B2O3 additives on the sintering behavior, microstructure and dielectric properties of CaSiO3 ceramics have been investigated. The B2O3 addition resulted in the emergence of CaO–B2O3–SiO2 glass phase, which was advantageous to lower the synthesis temperature of CaSiO3 crystal phase, and could effectively lower the densification temperature of CaSiO3 ceramic to as low as 1100 °C. The 6 wt% B2O3-doped CaSiO3 ceramic sintered at 1100 °C possessed good dielectric properties: r = 6.84 and tan δ = 6.9 × 10−4 (1 MHz).  相似文献   

14.
Coral-like nanostructured α-Mn2O3 nanocrystals were prepared by oxidative decomposition of MnCO3, exhibiting tremendous activity in the catalytic combustion of methane. This prepared α-Mn2O3 nanocrystals showed ultra-high stability during reaction while the structure feature was unaffected. The ultra-stable structure of the α-Mn2O3 catalyst has been demonstrated by characterization of SEM, XPS, XRD, Raman spectroscopy. The performance of the α-Mn2O3 nanocrystals has proven reproducible and potentially to be an applied catalyst for methane combustion.  相似文献   

15.
Dibenzothiophene (DBT) hydrodesulphurization (HDS) reaction at 3 MPa and 325–375 °C on Mo/γ-Al2O3 single-bed and Me/γ-Al2O3//SiO2//Mo/γ-Al2O3 (Me = Co or Ni) double-bed catalysts were investigated. Results indicate that ratio cyclohexylbenzene (CHB)/biphenyl (BP) or selectivity is higher when using double-beds rather than a single-bed. Synergy in dibenzothiophene hydrodesulphurization on Co//Mo and Ni//Mo double-beds is also detected. Changes in selectivity and conversion are attributed to the action of spillover hydrogen (Hso) formed in the first bed that reaches the second bed.  相似文献   

16.
Ru-based catalysts supported on Ta2O5–ZrO2 and Nb2O5–ZrO2 are studied in the partial oxidation of methane at 673–873 K. Supports with different Ta2O5 or Nb2O5 content were prepared by a sol–gel method, and RuCl3 and RuNO(NO3)3 were used as precursors to prepare the catalysts (ca. 2 wt.% Ru). At 673 K high selectivity to CO2 was found. An increase of temperature up to 773 K produced an increase in the selectivity to syngas (H2/CO = 2.2–3.1), and this is related with the transformation of RuO2 to metallic Ru as was determined from XRD and XPS results. At 873 K and with co-fed CO2 an increase of the catalytic activity and CO selectivity was found. A TOF value of 5.7 s−1 and H2/CO ratio ca. 1 was achieved over Ru(Cl)/6TaZr. Catalytic results are discussed as a function of the support composition and characteristics of Ru-based phases.  相似文献   

17.
α-Al2O3 platelets were prepared by a molten salt synthesis method when NaAlO2 was used as raw material. The effects of the stirring rate during the gel preparation, heating temperature, type and addition amount of molten salts, addition of plate-like α-Al2O3 seeds, additives such as TiOSO4 and Na3PO4·12H2O on the morphology of α-Al2O3 were studied. High stirring rate during the gel preparation and high heating temperature not only help to restrain the overlapping of α-Al2O3 platelets, but also improve the size distribution. When the heating temperature increases to 1200 °C, most of α-Al2O3 platelets are hexagonal in its morphology, and the size of platelets becomes relatively uniform. When Na2SO4-K2SO4 flux is used instead of NaCl-KCl flux, it is easy to obtain α-Al2O3 platelets with a big size. When the molar ratio of salt to final Al2O3 powders increases to 4:1, most of α-Al2O3 platelets are hexagonal, and the overlapping of powders is inhibited. The addition of a small amount of plate-like seeds has a significant effect on the size of α-Al2O3 platelets. With the increase of seed amount, the diameter of α-Al2O3 platelets tends to decrease. The addition of 5.45 wt.% TiOSO4 results in the formation of hexagonal α-Al2O3 platelets with an average diameter of 5.1 μm and an average thickness of 1.4 μm. Thin α-Al2O3 platelets with a discal shape are obtained owing to the co-addition of 0.51 wt.% Na3PO4·12H2O and 3 wt.% TiOSO4.  相似文献   

18.
The effect of coexisting SO2 on the catalytic activity of Ga2O3–Al2O3 prepared by impregnation, coprecipitation and sol–gel method for NO reduction by propene in the presence of oxygen was studied. Although the activity of Al2O3 and Ga2O3–Al2O3 prepared by impregnation (Ga2O3/Al2O3(I)) and coprecipitation (Ga2O3–Al2O3(CP)) was depressed considerably by the presence of SO2, NO conversion on Ga2O3–Al2O3 prepared by sol–gel method (Ga2O3–Al2O3(S)) was not decreased but increased slightly by SO2 at temperatures below 723 K. From catalyst characterization, SO2 treatment was found to cause two important effects on the surface properties: one is the creation of Brønsted acid sites on which propene activation is promoted (positive effect), and the other is the poisoning of NOx adsorption sites on which NO reduction proceeds (negative effect). It was presumed that the influence of SO2 treatment on the catalytic activity is strongly related to the balance between the negative and positive. The activity enhancement of Ga2O3–Al2O3(S) by SO2 was accounted for by the following consideration: (1) increase of the propene activation ability by SO2, (2) incomplete inhibition of NOx adsorption sites by SO2.  相似文献   

19.
The nature and relative populations of adsorbed species formed on the surface of un-promoted and sodium-promoted Pt catalysts supported either on bare Al2O3 or CeO2/La2O3-modified Al2O3, were investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) under simulated automobile exhaust conditions (CO + NO + C3H6 + O2) at the stoichiometric point. The DRIFT spectra indicate that interaction of the reaction mixture with the Pt/Al2O3 catalyst leads mainly to formation of formates and acetates on the support and carbonyl species on partially positively charged Pt atoms (Ptδ+). Although enrichment of Al2O3 with lanthanide elements (CeO2 and La2O3) does not significantly modify the carboxylate species formed on the support, it causes significant modification of the oxidation state of Pt, as indicated by the appearance of a substantial population of carbonyl species on reduced Pt sites (Pt0–CO). This modification of the Pt component is enhanced when Na-promotion is used, leading to formation of carbonyl species only on electron enriched Pt (i.e., fully reduced Pt0 sites) and to the formation of NCO on these Pt entities (2180 cm−1). The latter are thought to result from enhanced NO dissociation at Na-modified Pt sites. These results correlate well with observed differences in the catalytic performance of the three different systems.  相似文献   

20.
Crystal-growth-related microstructures and the length-to-diameter ratio of a single-crystal-type α-Al2O3 nanofiber were examined using HR-TEM techniques. The fibers exhibited diameters ranging from 50 to 100 nm and lengths of several tens of micrometers. During thermal treatments, the alumina fiber went through phase transformations similar to boehmite. Therefore, the phase evolution, especially the final θ- to α-Al2O3 stage of the phase transformation, may be the determining factor in the microstructural evolution of the nanofibers. HR-TEM techniques were utilized to demonstrate that the single crystals were formed by the coalescence of well-elongated α-Al2O3 colonies. The fibers grew in the [1 1 0] or [1 1 2] direction instead of [0 0 1]. A thermodynamic analysis revealed that if the α-Al2O3 nanofiber that transformed from θ-Al2O3 behaved in a stable manner, there could be a size ratio limit for the length and diameter of each α-Al2O3 colony. The smallest potential diameter was calculated to be around 17 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号