首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The presence and distribution of functional, high-affinity receptors for fibroblast growth factors (FGFs) in the neonatal organ of Corti were probed using the intracellular toxin saporin conjugated to basic FGF (FGF-2). FGFs that bind to high-affinity FGF receptors are internalized as part of the normal process of receptor inactivation. The receptor can thus be used for the targeted delivery of molecules conjugated to FGF into the cytoplasm. Incubation of postnatal day 5 (P5) rat organ of Corti cultures with FGF-saporin caused a dose dependent destruction of outer hair cells, Deiters cells and outer pillar cells. Inner hair cells and other cells were unaffected. Organ of Corti cultures at P0 and P10 showed much less damage than at P5. The results suggest that outer hair cells and adjacent supporting cells in the organ of Corti transiently express high-affinity FGF receptors, and that these receptors can mediate the intracellular delivery of bioactive molecules.  相似文献   

2.
The expression of mRNA encoding plasma membrane calcium ATPase (PMCA) subunit isoforms (1-4) and splice variants was examined in the adult and developing rat cochlea by PCR and in situ hybridization. High levels of PMCA mRNA expression were observed in the neurons of the spiral ganglion, and in hair cells. Spiral ganglion neurons expressed PMCA 1-3 beginning in embryonic development, reaching high levels shortly after birth, and continuing into adulthood. Inner hair cells expressed PMCA 1 at moderate levels from birth to the time of onset of cochlear function on postnatal day 12, and strongly from then until adulthood. Outer hair cells expressed PMCA 2 at high levels from shortly after birth through adulthood. The data suggest that the calcium clearance requirements of inner and outer hair cells are distinct. PMCA 2 is the isoform with the highest affinity for calmodulin, and has also been associated with high levels of inositol triphosphate. Its presence in outer hair cells suggests that regulation of the enzyme by calmodulin may be particularly important for this hair cell type. It further suggests that inositol phosphate may play a unique role in the outer hair cell.  相似文献   

3.
Fibroblast growth factors (FGFs) play multiple roles during development and in adult tissues as paracrine regulators of growth and differentiation. FGFs signal through transmembrane receptor tyrosine kinases, but heparan sulfate is also required for signaling by members of the FGF family. In addition, heparan sulfate may be involved in determining tissue distribution of FGFs. Using biotinylated FGF-2 and FGF-7 (KGF) as probes, we have identified specific interactions between FGFs and heparan sulfates in human tissues. Both FGF species bind to tissue mast cells and to epithelial cell membranes. Binding to basement membrane heparan sulfate is tissue source dependent and specific. Although FGF-2 strongly binds to basement membrane heparan sulfate in skin and most other tissue sites examined, FGF-7 fails to bind to basement membrane heparan sulfate in most locations. However, in subendothelial matrix in blood vessels and in the basement membrane of a papillary renal cell carcinoma, strong FGF-7 binding is seen. In summary, distinct and specific affinities of heparan sulfates for different FGFs were identified that may affect growth factor activation and local distribution. Heparan sulfate may have a gatekeeper function to either restrict or permit diffusion of heparin-binding growth factors across the basement membrane.  相似文献   

4.
Hair follicle vascularization appears to be closely related to the processes involved in hair cycle regulation, in which growth factors, cytokines and other bioactive molecules are involved. In particular, vascular endothelial growth factor (VEGF), essential for angiogenesis and vascular permeability, may be responsible for maintaining proper vasculature around the hair follicle during the anagen growth phase. The aim of our study was to compare the in vitro angiogenic capacity, i.e. the steady-state expression of the VEGF gene, of different cultured cell types derived from normal human hair follicles, corresponding to different follicular compartments. Human dermal papilla cells (DPC), fibrous sheath fibroblasts, dermal fibroblasts, and follicular and interfollicular keratinocytes were cultured and studied in vitro for VEGF expression at the mRNA level using RT-PCR, and for VEGF protein synthesis by radioimmunoprecipitation and immunocytochemistry. In vivo examination for VEGF expression in human terminal hair follicles was performed using immunohistochemical methods. In the present report the expression of four different VEGF molecular isoforms, differing in their angiogenic capacity, are described in different cultured follicular cell types for the first time. Cultured follicular cells strongly expressed mRNA of four VEGF molecular species identified as the 121-, 145-, 165- and 189-amino acid splice variants, the most prominent being the 121-amino acid molecule. DPC, and also other mesenchymal cells such as fibrous sheath fibroblasts and dermal fibroblasts, in vivo and in vitro strongly expressed VEGF mRNA and synthesized a 46-kDa VEGF protein, whereas follicular and interfollicular keratinocytes in vitro expressed lower levels of VEGF mRNA and proteins than mesenchymal cells. As the highest expression of VEGF was found in DPC, we suggest that DPC are mainly responsible for angiogenic processes possibly related to the human hair cycle.  相似文献   

5.
Polypeptide growth factors are positive and negative regulators of prostatic growth and function. Expression and biological effects of epidermal growth factor (EGF), transforming growth factors (TGFs) alpha and beta, fibroblast growth factors (FGFs), and insulin-like growth factors (IGFs) in the prostate have been extensively studied. EGF and TGF alpha, which share the same receptor, are strong mitogens for prostatic epithelial and stromal cells. Their paracrine mode of action in normal tissue and early-stage tumors is apparently altered towards an autocrine stimulation in hormone-independent tumors, which gain the ability to produce TGF alpha by themselves. TGF beta has a dual role in the regulation of prostatic growth. It inhibits growth of prostatic epithelial cells in culture and mediates programmed cell death after androgen withdrawal. However, advanced prostatic carcinomas become insensitive to the inhibitory effect of TGF beta. Several members of the FGF family have been identified in the prostate. They are mainly or exclusively expressed in the stromal cells, and stimulate the epithelial cells. In the rat Dunning tumor model, progression is accompanied by distinct changes in the expression of FGFs and their receptors. In the hyperplastic tissue, basic FGF (bFGF) is accumulated. This growth factor is also a potent angiogenic inducer, expression of which may determine the metastatic capability of a tumor. IGFs are paracrine growth stimulators in the normal and hyperplastic prostate. It is still under consideration whether prostatic cancer cells gain the ability to produce IGF-I by themselves and thus shift to an autocrine mode of IGF-I stimulation. Growth factors also interact with the androgen-signaling pathway. IGF-I in particular, other growth factors as well, can activate the androgen receptor.  相似文献   

6.
7.
A common cause of hearing impairment is exposure to loud noise. Recent research has demonstrated that the auditory mechanosensory cells are essential for normal hearing sensitivity and frequency selectivity. However, little is known about the effect of noise exposure on the mechanical properties of the auditory sensory cells. Here we report a significant reduction in the stiffness and cell length of the outer hair cells after impulse noise exposure, suggesting that mechanical changes at the cellular level are involved in noise-induced hearing loss. There is a recovery of the cellular stiffness and cell length over a two-week period, indicating an activation of cellular repair mechanisms for restoring the auditory function following noise trauma. The reduced stiffness observed at the cellular level is likely to be the cause for the downward shift of the characteristic frequency seen following acoustic trauma. The deterioration and the recovery of the mechanical properties of outer hair cells may form important underlying factors in all kinds of noise-induced hearing loss.  相似文献   

8.
It is believed that the sound-induced travelling wave in the mammalian cochlea is enhanced and sharpened by a positive feedback mechanism. This causes the passive linear basilar membrane growth function to become non-linear. The present paper shows that nonlinear basilar membrane vibration is due to the nonlinear growth function of the receptor potential of outer hair cells, which can be described by a 2nd-order Boltzmann function. Since intensity coding in the inner ear depends on an interaction of nonlinear basilar membrane motion and nerve fibers with three different types of synaptic threshold and growth function, the process is directly dependent on an intact mechanoelectrical transduction of outer hair cells. According to the proposed model, a loss in efficiency of outer hair cell mechanoelectrical transduction must lead to both a reduction in gain (i.e., hearing loss) and a linearizing of the response. As a result, once above threshold, the changes of stereociliary displacement, basilar membrane displacement and neural firing rate per unit change of sound intensity must be larger than for the healthy cochlea with its compressive nonlinearity.  相似文献   

9.
Combined ultrastructural and immunocytochemical studies reveal that in the adolescent 12- to 17-day-old mouse the afferent tunnel crossing fibers that innervate outer hair cells receive synaptic contacts from three distinct sources: the GABAergic fibers (GABA = gamma-aminobutyric acid) of the lateral olivocochlear bundle, the non-GABAergic efferent tunnel crossing fibers, and the inner hair cells themselves. The GABAergic fibers give off collaterals that synapse with the afferent tunnel fibers as they cross the inner hair cell region. These collaterals also form synapses with afferent radial dendrites that are synaptically engaged with the inner hair cells. Vesiculated varicosities of non-GABAergic efferent tunnel fibers also synapse upon the outer spiral afferents. Most of this synaptic activity occurs within the inner pillar bundle. Distinctive for this region are synaptic aggregations in which several neuronal elements and inner hair cells are sequentially interconnected. Finally, most unexpected were the afferent ribbon synapses that inner hair cells-formed en passant on the shafts of the apparent afferent tunnel fibers. The findings indicate that: (1) the afferent tunnel (i.e., outer spiral) fibers may be postsynaptic to both the inner and the outer hair cells; (2) the non-GABAergic efferent and the afferent tunnel fibers form extensive synaptic connections before exiting the inner pillar bundle; (3) the GABAergic component of the lateral olivocochlear system modulates synaptically both radial and outer spiral afferents.  相似文献   

10.
Fibroblast growth factors (FGFs) are essential for embryonic development and have been implicated in testis development and function. The effects of FGFs are mediated through four high-affinity receptors (FGFRs), which have different binding affinities for each of the ligands. We have used indirect avidin-biotin-horseradish peroxidase-enhanced immunohistochemistry to localize FGFR-1, -2, -3, and -4 in fetal, immature, and adult rat testes. In the fetal testis, immunoreactivity for FGFR-1 was seen in gonocytes, Sertoli cells, Leydig cells, and mesenchyme, and FGFR-3 was localized in gonocytes. In the immature testis, FGFR-1 was localized to spermatogonia, and all four FGFRs were localized in pachytene spermatocytes, immature adultlike Leydig cells, and peritubular cells. In the adult testis epithelium, Sertoli cells were immunoreactive for FGFR-4, and germ cells were immunoreactive for all four FGFRs, with specific receptors localized to specific stages of germ cell development. In the adult testis interstitium, FGFR-1, -2, and -4 were localized in Leydig cells, and FGFR-1 and -4 were also localized in peritubular cells. The discrete cell- and stage-specific localization of FGFRs in the fetal, immature, and adult rat testis suggests that FGFs exert specific roles through these receptors in spermatogenesis, Leydig cell function, and testicular development.  相似文献   

11.
Amplification of auditory stimuli by hair cells augments the sensitivity of the vertebrate inner ear. Cell-body contractions of outer hair cells are thought to mediate amplification in the mammalian cochlea. In vertebrates that lack these cells, and perhaps in mammals as well, active movements of hair bundles may underlie amplification. We have evaluated a mathematical model in which amplification stems from the activity of mechanoelectrical-transduction channels. The intracellular binding of Ca2+ to channels is posited to promote their closure, which increases the tension in gating springs and exerts a negative force on the hair bundle. By enhancing bundle motion, this force partially compensates for viscous damping by cochlear fluids. Linear stability analysis of a six-state kinetic model reveals Hopf bifurcations for parameter values in the physiological range. These bifurcations signal conditions under which the system's behavior changes from a damped oscillatory response to spontaneous limit-cycle oscillation. By varying the number of stereocilia in a bundle and the rate constant for Ca2+ binding, we calculate bifurcation frequencies spanning the observed range of auditory sensitivity for a representative receptor organ, the chicken's cochlea. Simulations using prebifurcation parameter values demonstrate frequency-selective amplification with a striking compressive nonlinearity. Because transduction channels occur universally in hair cells, this active-channel model describes a mechanism of auditory amplification potentially applicable across species and hair-cell types.  相似文献   

12.
Several investigators have postulated that soluble growth factors are involved in the early development of the pancreas. In many tissues in which soluble factors are implicated in development, these factors act on their target cells through tyrosine kinase receptors. Because we had some preliminary evidence that fibroblast growth factor receptors (FGFRs) were expressed in the early pancreas, we investigated the effect of fibroblast growth factors (FGFs) during embryonic pancreatic development. For that purpose, we first studied the distribution and the functionality of FGFRs during pancreatic organogenesis. FGFR1 and FGFR4 were shown to be expressed at a high level during early pancreatic development before embryonic day 16, their levels of expression decreasing thereafter. The functionality of FGFR was studied next. It was demonstrated in vitro that both FGF1 and FGF2 induce the expression of NGFI-A mRNA, a useful indicator of functional growth factor-signaling pathways. Finally, the effect of FGF2 on embryonic pancreatic epithelial cell proliferation was studied. It was shown that FGF2 induces the proliferation of pancreatic epithelial cells during embryonic life. Taken together, these data strongly suggest that FGFs are implicated in pancreatic development during embryonic life.  相似文献   

13.
14.
Growth of the prostate is controlled by androgen. However, there is information indicating that androgen may not act directly, but may act indirectly through polypeptide growth factors, to control prostate growth. This review will focus on the involvement of members of the fibroblast growth factor (FGF) family in this process. The properties of FGFs and FGF-receptors are described that implicate these molecules in growth control. Information is provided that prostate stromal cells synthesize FGF2 and FGF7. FGF2 is a potent mitogen for stromal cells; whereas, FGF7 is exclusively a mitogen for epithelial cells. Transforming growth factor beta (TGF beta), also produced by prostate cells, inhibit cell growth. This suggests that prostate growth is controlled by autocrine and paracrine mechanisms. Evidence is presented that altered FGF expression accompanies benign prostatic hyperplasia and prostate cancer. A model is proposed whereby androgen regulates TGF beta, influencing FGF2 and FGF7 expression, and in turn regulating growth of the prostatic stroma and epithelium. An imbalance in the influence of these growth factors may contribute to prostate disease.  相似文献   

15.
Recent data show that anti-angiogenesis may provide a promising route to treat cancer. Fibroblast growth factors (FGFs) are powerful angiogenic polypeptides, whose mitogenic activity requires the presence of heparin-like compounds. It has been shown that angiogenesis promoted by FGFs on inhibition by monoclonal antibodies and antisense targeting can also inhibit tumour growth. Derivatives of suramin, a polysulfonated binaphthyl urea and binaphthylsulfonated derivatives of distamycin, suradistas, constitute an important group of potential anti-cancer agents. These compounds compete with heparin in forming tight complexes with FGFs. This inhibits the recognition of these growth factors by their tyrosine kinase membrane receptors thereby suppressing their angiogenic activity. Here we show that 1,3,6-naphthalenetrisulfonate, a common chemical function of the suramins and suradistas with the highest anti-angiogenic activity inhibits the mitogenic activity of acidic fibroblast growth factor, and that this inhibition is relieved by increasing concentrations of heparin in the assay. We have also solved the three-dimensional structure in solution of the protein complexed to this compound. The structural data provide clues that may help in understanding the inhibitory effect of suramins and suradistas, and could contribute to the development of new anti-tumoral drugs.  相似文献   

16.
Colonies of small hepatocytes appeared after the culture of primary adult rat hepatocytes for 4 days in serum-free Dulbecco's modified Eagle's medium containing 10 mM nicotinamide and 10 ng/ml of epidermal growth factor (EGF), acidic and basic fibroblast growth factors (FGF), hepatocyte growth factor (HGF), or transforming growth factor-alpha (TGF-alpha). Every colony consisted of cells that each had a single nucleus and a higher nucleus/cytoplasm ratio than surrounding hepatocytes, and immunocytochemically the cells induced by any mitogen were stained with albumin, transferrin, cytokeratin-8 and -18. But these cells expressed neither cytokeratin-7 nor -19. When 6 x 10(5) cells were plated on 35-mm dishes, about 15 colonies per 1,000 attached cells were observed in the cultures treated with EGF, HGF, and TGF-alpha. Although FGFs could also induce colonies, their number was less than half of the number induced by EGF. Furthermore, the numbers of colonies induced by the combinations of EGF+HGF, EGF+TGF-alpha, and HGF+TGF-alpha were not different from those of the colonies induced by each mitogen alone. To examine the ability of co-mitogenic factors to induce small-cell colonies, angiotensin-II, insulin-like growth factor-I, norepinephrine, tumor necrosis factor, and vasopressin were used. In the cells cultured without EGF, these co-mitogens neither stimulated DNA synthesis nor induced colonies. On the other hand, in cells cultured with both EGF and each co-mitogen, although the DNA synthesis of the hepatocytes was enhanced, the number of colonies detected was not significantly different from the number which EGF alone could induce. These results showed that the small-cell colonies in primary cultures of rat hepatocytes were inducible by EGF, HGF, TGF-alpha, or FGFs and that the co-mitogens did not influence the formation of the small-cell colonies.  相似文献   

17.
The reversible hearing loss in the nonoperated ear noted by patients after ear surgery remains unexplained. This study proposes that this hearing loss is caused by drill noise conducted to the nonoperated ear by vibrations of the intact skull. This noise exposure results in dysfunction of the outer hair cells, which may produce a temporary hearing loss. Estimations of outer hair cell function in the nonoperated ear were made by recording the change in amplitude of the distortion-product otoacoustic emissions before and during ear surgery. Reversible drill-related outer hair cell dysfunction was seen in 2 of 12 cases. The changes in outer hair cell function and their clinical implications are discussed.  相似文献   

18.
The aromatic hydrocarbon, toluene, has been reported to disrupt auditory system function both in occupational epidemiological and in laboratory animal investigations. This agent, along with several other organic solvents, impairs hearing preferentially at middle frequencies - a finding that distinguishes these agents from the traditional high frequency impairment observed with ototoxic drugs such as aminoglycoside antibiotics and cisplatin. Prior investigations performed in vivo have identified the outer hair cell as a probable target for toluene exposure. The purpose of this investigation was to determine directly whether outer hair cells isolated from the guinea pig cochlea show morphological alterations consistent with the toxic response seen in physiological studies with toluene exposure. The effect of toluene superfusion on outer hair cell shortening was assessed for cells harvested from different locations within the cochlea. Control studies included assessment of cell shortening among outer hair cells exposed to trimethyltin and cells exposed to benzene. Trimethyltin disrupts high frequency hearing preferentially and benzene does not produce hearing loss in vivo. Toluene at a concentration of 100 microM produced a marked shortening of outer hair cells although the effect was significantly greater among cells isolated from the apical half of the cochlea than from the basal half of the cochlea. By contrast, trimethyltin at the same concentration produced a preferential shortening among outer hair cells from the base of the cochlea. Benzene (100 microM) did not disrupt outer hair cell length of cells harvested from the apex. The results indicate that intrinsic features of outer hair cells contribute significantly to the site of ototoxic impairment observed in vivo for toluene.  相似文献   

19.
Peptide growth factors play a role in the maintenance of normal prostatic growth and differentiation (Fig. 2). It seems likely that the androgen sensitivity of human prostate is mediated by the production of peptide growth factors from stromal cells which act as the direct intermediate of androgen action on epithelial cells. TGF-beta 1 inhibition of epithelial cells is opposed by the stimulatory action of EGF, IGF and FGFs to maintain an equilibrium of epithelial cell numbers. The indirect mitogenic action of androgens appear to act by down-regulation of TGF-beta 1 and possibly EGF receptors. There is also interaction with the effects of IGF-II, produced by prostatic stromal cells and acting on epithelial cells to increase proliferation. The growth of normal prostatic fibroblasts is under the control of bFGF and TGF-beta 1. However, although our understanding of the actions of these growth factors in the normal prostate has improved over the last decade, their role in the development and maintenance of prostate cancer is less clearly defined. TGF-beta 1, classically considered to be inhibitory for epithelial cells, may be up-regulated in prostatic tumours, stimulating growth. Alternatively, autocrine production of such growth factors by tumour cells may lead to loss of inhibitory effects from exogenous TGF-beta 1, a mechanism also witnessed with TGF-alpha and bFGF. The role of EGF in the development of prostate cancer is confusing because results from the use of different cell types and experimental conditions is contradictory. It may be that a switch in the production of the predominant EGFr ligand from EGF to TGF-alpha is an important feature in the development and maintenance of the malignant phenotype. The presence of TGF-alpha autocrine loops has been shown clearly in some tumour cell lines. This switch in the production of a particular ligand may also be a feature of IGFs in prostate cancer. IGF-II may be replaced by IGF-I during malignant progression, both of which are able to act via the type 1 receptor. This change in IGF expression appears to be accompanied by altered expression of the IGF-BP2, with less detectable within prostatic tissues but elevated serum levels [58]. Basic FGF is normally produced by prostatic fibroblasts but is also produced by some prostatic cancer cell lines [64]. However, as with all growth factors, the expression of the bFGF protein and its receptor is dependent on the cell line examined. The autocrine and paracrine control of normal and abnormal prostatic growth by growth factors is important in determining their role in the development and maintenance of prostate cancer. Better understanding of such mechanisms is essential for the development of novel therapeutic strategies in the control and treatment of prostate cancer.  相似文献   

20.
This study examines the development of the reticular lamina in the Syrian golden hamster postriatally from birth to adulthood at 2 day intervals using the scanning electron microscope. During this period, numerous transitory features emerged whose roles were concerned primarily with the development of the tectorial membrane (TM). The principal findings were as follows. (1) The surface of the developing organ of Corti produced all the fibrous material composing the minor tectorial membrane (mTM) including radial and longitudinal fiber bundles which formed the skeleton of the TM, and spongy, amorphous material which formed its intervening ground substance. (2) Throughout most of the cochlear spiral, radial fiber bundles were seen extending from the microvilli of supporting cells and projecting toward the major tectorial membrane (MTM). In most of the basal turn, but not in the apical turn, these radial bundles were interwoven with longitudinal fiber bundles which emerged from the surface of Hensen's cells. These findings indicate that the architecture of the TM is more complex in the basal turn than in the apex. (3) Increases in the dimensions of the reticular lamina resulted from the emergence of pillar cell headplates and growth in the diameter of hair cells and supporting cells. The emergence of pillar cell headplates was the principal factor contributing to increases in the radial dimension of the reticular lamina. This emergence was most dramatic between 10 and 12 days after birth (DAB) after the mTM completed its growth. Since the mTM appears to be bound medially to the MTM and laterally to the marginal pillars by 10 DAB, it seems likely that the growth of the reticular lamina after 10 DAB causes some stretching of the mTM both radially and longitudinally. (4) Completion of outer hair cell stereocilia growth at 8 DAB was followed by loss of supporting cell attachments of the TM (trabeculae) by 10 DAB, and coincided with the formation of marginal pillars from the third row of supporting cells. It is suggested that the formation of marginal pillars may be required for coupling of the TM to the tips of outer hair cell stereocilia and for induction of radial tension of the mTM. (5) Removal of the marginal pillar attachments occurred following completion of hair cell growth. (6) All structures on the reticular lamina appeared to have adult-like characteristics by 20 DAB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号