首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensionally ordered (3DOM) macroporous phosphotungstic acid/SiO2 (HPW/SiO2) materials were prepared by using colloidal crystal as templates and applied for oxidative desulfurization (ODS) of the model fuel oil. The obtained HPW/SiO2 materials were characterized through scanning electron microscopy, powder X-ray diffraction, N2 sorption, and Fourier transform infrared spectroscopy. The results indicated that 3DOM HPW/SiO2 possessed hierarchical pore architectures which contained ordered macropores and disordered mesopores, with the Keggin type HPW embedded in the framework of pore structure. The removal rate of dibenzothiophene (DBT) could reach 100% under the optimum conditions, moreover. The performance was only slightly decreased for the regenerated catalyst after 7 cycles.  相似文献   

2.
In order to reduce the emission of SO_x in the environment,sulfur compounds must be removed efficiently from fuels.Three-dimensional highly ordered meso-macroporous HPW/TiO_2 (3DO m/M HPW/TiO_2) materials were synthesized successfully by sol-gel method and applied as oxidative desulfurization catalyst for the model fuel.The characterization results displayed the existence of highly ordered meso-macroporous structures and the Keggin type of HPW was highly dispersed in TiO_2 framework.The effect of catalyst on desulfurization under different reaction conditions was studied systematically.The results showed that the catalyst exhibited excellent desulfurization performance in the hydrogen peroxide oxidation system,which could be explained by the unique meso-macroporous structure of catalyst.In addition,the catalyst showed good cycling performance and the removal rate of DBT still reached 96.1% even after 6 cycles,providing a feasible method for the development and application of fuel deep desulfurization catalysts.  相似文献   

3.
The oxidation behavior of Al2O3/TiAl in situ composites fabricated by hot-pressing technology was investigated at 900° in static air. The results indicate that the mass gains of the composites samples decrease gradually with increasing Nb2O5 content and the inert Al2O3 dispersoids effectively increase the oxidation resistance of the composites. The higher the Al2O3 dispersoids content, the more pronounced the effect. The primary oxidation precesses obey approximately the linear laws, and the cyclic oxidation precesses follow the parabolic laws. The oxidized sample containing Ti2AlN and TiAl phases in the scales exhibits excellent oxidation resistance. The oxide scale formed after exposure at 900°C for 120 h is multiple-layered, consisting mainly of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner TiO2+Al2O3 mixed layer. From the outer layer to the inner layer, TiO2+Al2O3 mixed layer presents the transit of Al-rich oxide to Ti-rich oxide mixed layer. Near the substrate, cross-section micrograph shows a relatively loose layer, and micro- and macro-pores remain on this layer, which is a transition layer and transferres from Al2O3+TiO2 scale to substrate. The thickness of oxide layer is about 20 μm. It is also found that continuous protective alumina scales can not be observed on the surface of oxidation scales. Ti ions diffuse outwardly to form the outer TiO2 layer, while oxygen ions transport inwardly to form the inner TiO2+Al2O3 mixed layer. Under long-time intensive oxidation exposure, the internal Al2O3 scale has a good adhesiveness with the outer TiO2 scale. No obvious spallation of the oxide scales occurs. The increased oxidation resistance by the presence of in situ Al2O3 particulates is attributed to the enhanced alumina-forming tendency and thin and dense scale formation. Al2O3 particulates enhance the potential barrier of Ti ions from M/MO interface to O/MO interface, thereby the TiO2 growth rate decreases, which is also beneficial to improve the oxidation resistance. Moreover, the multi-structure of the TiO2+Al2O3 mixed layer decreases the indiffusion of oxygen ions and also avails to improve the high temperature oxidation resistance of the as-sintered composites. Supported by the Special Program for Education Bureau of Shaanxi Province, China (Grant No. 08JK240) and Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology, China (Grant No. SLGQD0751)  相似文献   

4.
With Al foil, Cu foil and steel mesh as the metal interlayers, respectively, three types of alumina/epoxy/metal laminated composites were fabricated with epoxy resin adhesive as a binder via a simple process. The impact tests were performed and the fracture patterns and impact response of all the three laminates were analyzed. The experimental results indicate that the absorbed energy is mainly determined by metal interlayer. The peak load depends on not only alumina substrate but also metal interlayer. The Al2O3/epoxy/Cu laminates sustain the maximum peak load and Al2O3/epoxy/steel mesh laminates have the largest threshold energy for penetration. The fracture analysis shows that the main damage modes are Al2O3 matrix cracking and metal deformation for lower impact energies, and complete breakage and penetration for higher impact energies.  相似文献   

5.
Three-dimensionally ordered(3DOM) macroporous phosphotungstic acid/SiO_2(HPW/SiO_2) materials were prepared by using colloidal crystal as templates and applied for oxidative desulfurization(ODS) of the model fuel oil. The obtained HPW/SiO_2 materials were characterized through scanning electron microscopy, powder X-ray diffraction, N_2 sorption, and Fourier transform infrared spectroscopy. The results indicated that 3 DOM HPW/SiO_2 possessed hierarchical pore architectures which contained ordered macropores and disordered mesopores, with the Keggin type HPW embedded in the framework of pore structure. The removal rate of dibenzothiophene(DBT) could reach 100% under the optimum conditions, moreover. The performance was only slightly decreased for the regenerated catalyst after 7 cycles.  相似文献   

6.
HPW/SBA-15的制备及其催化氧化脱硫性能研究   总被引:1,自引:0,他引:1  
以SBA-15分子筛为载体、磷钨杂多酸(HPW)为活性组分,制备磷钨酸负载型催化剂.以HPW/SBA-15为催化剂、双氧水为氧化剂对模拟柴油进行催化氧化脱硫研究,考察磷钨酸负载量、反应时间、温度和剂油比对脱硫率的影响,得到了优化的催化氧化条件:磷钨酸负载量为30%,反应温度80℃,反应时间60min,剂油比1︰6时,脱硫率可达97.8%.  相似文献   

7.
A series of heteropoly acid (HPA) based Al_2O_3 catalysts with three-dimensional ordered (3DOM) structure were synthesized by colloidal crystal template method.Interconnected macropores (250 nm) could be clearly observed by scanning electron microscope (SEM) and transmission electron microscope (TEM).Mesopores could be detected by N_2 adsorption-desorption isotherms which further confirmed the 3DOM structural characteristics of catalyst.Moreover,Keggin-type HPW was highly dispersed in the Al_2O_3 framework,which suggested by powder X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR) results.The oxidation desulfurization (ODS) performance of 3DOM H_3PW_(12)O_(40)/Al_2O_3 of refractory sulphur compounds was evaluated in the presence of hydrogen peroxide.It oxidized 98.5% of dibenzothiophene (DBT) into corresponding sulfone within 3 h,which exhibited superior ODS performance than corresponding mesoporous and microporous H_3PW_(12)O_(40)/Al_2O_3 catalyst.The enhancement of ODS efficiency is related to the improvement of mass transfer of DBT in the pore channel resulting from the interconnected 3DOM structure.Furthermore,the as-prepared catalyst still demonstrates outstanding cycle performance after 6 runs,which could be easily recovered from the model fuel.  相似文献   

8.
In order to improve the tribological properties of ceramic composites, Al2O3/TiC-Al2O3/ TiC/CaF2 self-lubricating laminated ceramic composites were prepared by vacuum hot pressing sintering. Experiments were conducted to get mechanical properties and the friction and wear properties were also measured with friction and wear tester. The worn surfaces were observed by scanning electron microscope (SEM) and energy dispersion spectrum (EDS). The wear resistance properties and the self-lubricating effect of ceramic composites were analyzed. Results show that the Al2O3/TiC-Al2O3/TiC/CaF2 self-lubricating laminated ceramic composites layers are well-defined with a higher bonding strength and the mechanical performances are uniform enough to overcome the anisotropy of weak laminated ceramic composites. In addition, the fracture toughness of Al2O3/TiC layers is also improved. Its friction coefficient and wear rates decrease with the increase of rotation speed and load. Al2O3/TiC-Al2O3/TiC/CaF2 self-lubricating laminated ceramic composites have good wear resistance because of the tribofilm formed by the CaF2 solid lubricants. The wear mechanisms of Al2O3/TiC/ CaF2 layers are abrasive wear and Al2O3/TiC layers are adhesive wear.  相似文献   

9.
杂多酸催化氧化脱除柴油中硫化物的研究   总被引:1,自引:0,他引:1  
以活性炭负载磷钨杂多酸(HPW)为催化剂,H2O2为氧化剂,对含二苯并噻吩(DBT)模拟柴油进行催化氧化脱硫研究.考察了负载量、反应时间、反应温度及氧化剂与模拟柴油体积比V(O)V(M)对脱硫率的影响.结果表明:活性炭负载磷钨杂多酸对模拟柴油脱硫具有较好的催化活性;最适宜的催化氧化条件是HPW的负载量60%~70%,反应时间为1.5h;温度为60℃;V(O)V(M)=15;此条件下,DBT的脱除率为97.4%.  相似文献   

10.
In order to enhance the oxidation resistance of C/Si C composites, mullite/yttrium silicate coatings were fabricated on C/Si C composites through dip-coating route. Al_2O_3-SiO_2 sol with high solid content was selected as the raw material for mullite and "silicone resin + Y_2O_3 powder" slurry was used to synthesize yttrium silicate. The microstructure and phase composition of coatings were characterized, and the investigation on oxidation resistance and anti-oxidation mechanism was emphasized. The as-fabricated coatings consisting of SiO_2-rich mullite phase and Y_2Si_2O_7 phase show high density and favorable bonding to C/Si C composites. After oxidized at 1 400 ℃ and 1 500 ℃ for 30 min in static air, the coating-containing C/Si C composites possess 91.9% and 102.4% of the original flexural strength, respectively. The desirable thermal stability of coatings and the further densification of coatings due to viscous flow of rich SiO_2 and Y-Si-Al-O glass are responsible for the excellent oxidation resistance. In addition, the coating-containing composites retain 99.0% of the original flexural strength and the coatings exhibit no cracking and desquamation after 12 times of thermal shock from 1 400 ℃ to room temperature, which are ascribed to the combination of anti-oxidation mechanism and preferable physical and chemical compatibility among C/Si C composites, mullite and Y_2Si_2O_7. The carbothermal reaction at 1 600 ℃ between free carbon in C/Si C substrate and rich SiO_2 in mullite results in severe frothing and desquamation of coatings and obvious degradation in oxidation resistance.  相似文献   

11.
Since their discovery by Iijima[1], carbon nanotubes (CNTs) have been the focus in novel materials research. Theoretical and experimental studies show[2-9] that CNTs have extraordinary mechanical and electrical properties. Krishnan et al.[2] have reported that the mean value of Young’s modulus of single-wall nanotubes (SWNTs) is 1.25 TPa. Yu et al.[3] measured Yang’s modulus of multi-wall nanotubes (MWNTs) between 270 and 950 GPa and breaking strength between 11 and 63 GPa. The ele…  相似文献   

12.
Hydration mechanism of tabular alumina carbon composites reinforced by Al4C3 in situ reaction with Mg and Al was researched in water steam using super automatic thermostatic water bath from 25 °C to 85 °C. It is shown that hydration mechanism of the composites is chemical reaction control at 44.3 °C-84 °C in H2O(g). The hydration was controlled by diffusion from 24.7 °C to 33 °C. The ratio of added Mg/Al influences the HMOR of the composites.The mechanism of HMOR of the composites with different ratios of Mg/Al can be discovered by means of SEM analysis. The active Mg/Al powder and flake graphite inside give the composites outstanding hot strength resulting from the interlocking structure of Al4C3 crystals at high temperature. Besides, the matrix changes into the Al4C3 with high refractoriness. The method of preventing the hydration of tabular alumina carbon composites reinforced by Al4C3 in situ reaction was immersed in the wax at suitable temperature or storing them below 33 °C in a dry place or storing them with paraffin-coating.  相似文献   

13.
60% white corundum used for aggregate, 5% aluminium powder for fixed additions and 35% various additives for matrix were prepared for specimens 1#,2#,3#. They were mixed uniformly with the suitable resin as a binder and pressed under pressure of 315 ton forging press, then dried at 200℃ for 24 h. Effects of various additives on 1500 ℃×2 h creep properties of Al3CON reinforced corundum composite were researched. The experimenal results show that creep coefficients of specimens 1#,2#,3# at 1500 ℃×2 h are 1.4×10^- 4, -9.4×10^-4, -22.6×10^-4, respectively. Crushing strength of the slide plate added with suitable additive A after fired at 1500 ℃ ×3 h reaches to 225 MPa, the creep rate is positive all the time from 0% to 0.014% at 1500 ℃ for 2 h. The microstructure result analysis shows that reinforced phases of Al3CON fiber composite have been formed after fired with Al powder in coke at high temperatures for specimen 1#, and the strength of the composite is increased. The hot modulus of rupture is up to 59 MPa at 1400 ℃ and the RUL is obviously higher than that at 1700 ℃. Its service life is two times as that of Al2O3-C slide plate when used in the process of pouring steel. The mechanism of creep rate resistance of the composites can be discovered by means of SEM and EDAX analysis. It is concluded that the active Al3CON and Al2O3 multiphases that were formed by N2 in gas, C, Al and Al2O3 inside the matrix of the composites during in-situ reaction,which gives the composites outstanding creep rate resistance for the dense zone resuiting from Al3CON oxidation that inhibits contraction at the high temperature. Besides, the matrix will turn into the multiphase with high refractoriness, N content and its Al3CON reinforced fiber will further increase accordingly. In addition, Al3CON formed by Al2O3 and C, Al in the matrix with N2 in gas will inhibit the creep rate and also greatly improve the creep rate resistance of the composites.  相似文献   

14.
Al2O3/TiAl composites were successfully fabricated by hot-press-assisted exothermic dispersion method with elemental powder mixtures of Ti, Al TiO2 and Nb2O5, and the microstructure and mechanical properties were investigated. The results indicate the fine Al2O3 particles tend to disperse on the grain boundaries. The grain size of TiAl matrix decreases and the hardness increases with increasing Nb2O5 content. The bending strength and fracture toughness reach to a maximum when Nb2O5 content is 6 wt%, under 642 MPa and 6.69 MPa·m1/2, respectively. Based on the fractography and the observation of crack propagation path, it is concluded that the strengthening and toughening of such composites at room temperature can be attributed to the refinement of the TiAl matrix, the deflection behavior in the crack propagation and the dispersion of Al2O3 particles.  相似文献   

15.
An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNi18-8 steel melt on 30%(mass fraction) Ni-containing alumina based composite ceramic(Ni/Al2O3) at 1 600 ℃.The infiltration quality and interfacial bonding behavior were investigated by SEM,EDS,XRD and tensile tests.The results show that there is an obvious interfacial reaction layer between the alloying steel and the Ni/Al2O3 composite ceramic.The interfacial reactive products are(FexAly)3O4 intermetallic phas...  相似文献   

16.
Three series of Al2O3/Al laminated ceramic matrix composites,named SPA,SPV and HP,were fabricated by different methods.SPA and SPV were prepared using Al2O3 slices and Al slurry via screen printing and subsequent heat treatment in air or vacuum.HP samples were made by hot pressing the layered stack of Al foils and Al2O3 slices.SEM and XRD were applied to analyze the microstructure and the interlayer crystal phase.The bending strength,fracture toughness and fracture work of the samples made by the three methods were measured and compared.The results show that the composites have much better toughness and higher fracture work than the Al2O3 slice.Among the samples made by the three methods,the samples made by hot pressing have the optimum mechanical performance.The displacement-load curves and fracture mechanism were analyzed.  相似文献   

17.
The composition, microstructures and properties of SiC/Al2O3/Al-Si composites formed by reactive penetration of the molten aluminum into the preforms of SiO2 and SiC were investigated. The composition of the composites was measured by X-ray diffraction ( XRD ). The microstructures of the composites were also measured by scanning electron microscopy (SEM) and optical microscopy. In addition, the factors affecting the properties of the composites were discussed. The experiments show that the mechanical properties of the composites depend on their relative densities and the sizes of the fillers“ SiC gains“. The denser the SiC/Al2O3/Al-Si composites, the higher their bending strength. As the filler “SiC gains“ become fine, the bending strength of the composites increases.  相似文献   

18.
Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room temperature brittleness induces shape difficult and limits its industrial application. The Fe-Al intermetallic coatings were prepared by high velocity arc spraying technology with cored wire on 20G steel, which will not only obviate the problems faced in fabrication of these alloys into useful shapes, but also allow the effective use of their outstanding high-temperature performance. The Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied by means of thermogrativmetic analyzer at 450, 650 and 800°C. The results demonstrate that the kinetics curve of oxidation at three temperatures approximately follows the logarithmic law. The composition of the oxidized coating is mainly composed of Al2O3, Fe2O3, Fe3O4 and FeO. These phases distribute unevenly. The protective Al2O3 film firstly forms and preserves the coatings from further oxidation. Foundation item: Project(50235030) supported by the National Natural Science Foundation of China; Project(98BK014) supported by the Foundation of State Economy Trade Committee of China  相似文献   

19.
Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3 composite materials were synthesized by one-step synthesis method. The chemical composition, morphology, structure, and thermal properties were investigated by XRD, EDS, SEM, and DSC. The results show that NaCl can be absorbed by Al2O3 particle from 800 to 900 °C for Al2O3 particle surface is rich active structure. The results also indicate that the leakage of NaCl when the phase change can be prevented by Al2O3 particles and the enthalpy of phase change of NaCl-Al2O3 material is 362 J/g. The composites have an excellent heat storage capacity. Therefore, this study contributes to one new thought and method to prepare high temperature heat storage material and this material can be applied in future thermal engineering.  相似文献   

20.
Slag glass melting is usually performed on a laboratory scale in crucibles, which are economically viable tools for the production of slag glass-ceramics. In this work, quaternary CaO-Al2O3-MgOSiO2 (CAMS) glass-ceramics were prepared by melting the tailing of Bayan Obo mine tailing, blast furnace slag, and fly ash in alumina and graphite crucibles. The effect of the crucible material on the microstructure and properties of the glass-ceramics was investigated using differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and inductively coupled plasma atomic emission spectroscopy. Results indicated that the contents of Al2O3 and Fe2O3 in the initial glass were significantly changed by the corrosion of the alumina crucibles during the glass melting process and by the reducing action of the graphite crucibles. The main crystal phases of glass-ceramics melted in alumina crucibles and graphite crucibles were Ca (Mg, Fe, Al) (Si, Al)2O6, coesite and Ca (Mg, Al) (Si, Al)2O6, respectively. According to these findings, we conclude that the microstructure and properties of the glass-ceramics are affected by the crucibles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号