首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we address the medium access control (MAC) problem in ad-hoc networks from the energy-efficiency perspective and develop a residual-energy-based collision resolution algorithm (CRA) for energy-limited terminals. In this interval-splitting-based algorithm, packets involved in a collision are partitioned into subsets according to the amount of residual battery energy left at the corresponding terminals, and retransmissions are scheduled according to a tree structure. To avoid possible performance degradations for cases of not evenly spread battery energies, we propose a hybrid approach that interchangeably uses energy-based and first-come-first-served CRA’s to resolve packet conflicts. We extend the proposed energy-based collision resolution (CR) approach to cases without hard energy constraints but, rather, with energy-efficiency objectives. The algorithm then utilizes the distance from the receiver as the criterion. We then address energy-efficient conflict resolution in general multi-hop ad-hoc networks. In this context, a useful but yet simple method is proposed to reduce the interdependence between collision resolution processes at different receivers, which would otherwise distort the general structure of tree-splitting algorithms. We evaluate the proposed algorithms via simulation for communication systems ranging from simple single-cell classical collision channel models to general multi-hop wireless ad-hoc networks.  相似文献   

2.
The medium access control protocol determines system throughput in wireless mobile ad hoc networks following the ieee 802.11 standard. Under this standard, asynchronous data transmissions have a defined distributed coordination function that allows stations to contend for channel usage in a distributed manner via the carrier sensing multiple access with collision avoidance protocol. In distributed coordination function, a slotted binary exponential backoff (BEB) algorithm resolves collisions of packets transmitted simultaneously by different stations. The BEB algorithm prevents packet collisions during simultaneous access by randomizing moments at stations attempting to access the wireless channels. However, this randomization does not eliminate packet collisions entirely, leading to reduced system throughput and increased packet delay and drop. In addition, the BEB algorithm results in unfair channel access among stations. In this paper, we propose an enhanced binary exponential backoff algorithm to improve channel access fairness by adjusting the manner of increasing or decreasing the contention window based on the number of the successfully sent frames. We propose several configurations and use the NS2 simulator to analyze network performance. The enhanced binary exponential backoff algorithm improves channel access fairness, significantly increases network throughput capacity, and reduces packet delay and drop. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this letter, we suggest contention resolution with exponential increase and exponential decrease (EIED) backoff for bandwidth request in worldwide interoperability for microwave access (WiMAX) networks. In EIED, setting of backoff factor to overcome collision due to contention is very challenging and hence we suggest a method to compute backoff factor with average contention window. Further, to reduce access delay, we estimate the response time based on probability of failure and average contention window. Simulations validate the proposed EIED backoff in terms of contention efficiency, capacity and access delay. The contention efficiency and capacity is improved by 47.50% (for q value of 0.25) and 28.57% (for 25 numbers of transmission opportunity), respectively, when bandwidth request is made with the proposed EIED backoff mechanism.  相似文献   

4.
The contention resolution scheme is a key component in carrier-sense-based wireless MAC protocols. It has a major impact on MAC'S performance metrics such as throughput, delay, and jitter. The IEEE 802.11 DCF adopts a simple contention resolution scheme, namely, the binary exponential backoff (BEB) scheme. The BEB scheme achieves a reasonable performance for transmitting best-effort packets in small-sized wireless networks. However, as the network size increases, it suffers from inefficiency because of the medium contention, which leads to reduced performance. The main reason is that the BEB mechanism incurs an ever- increasing collision rate as the number of contending nodes increases. We devise a novel contention resolution scheme, a k-round elimination contention (k-EC) scheme. The k-EC scheme exhibits high efficiency and robustness during the collision resolution. More importantly, it is insensitive to the number of contending nodes. This feature makes it feasible for use in networks of different sizes. Simulation results show that the k-EC scheme offers a powerful remedy to medium contention resolution. It significantly outperforms the IEEE 802.11 DCF scheme in all the MAC'S performance metrics and also exhibits better fairness.  相似文献   

5.
In this letter, we evaluate the effectiveness of a multi-stage contention scheme for wireless local area networks (WLANs) medium access control (MAC). Multi-stage contention schemes basically divide the stations into smaller groups to resolve the contention more efficiently. Previous researchers have proposed virtual grouping schemes for WLANs MAC. Here we quantitatively analyze what can be achieved with a simple grouping scheme, i.e. through multi-stage contention. Our analysis shows that the multi-stage scheme is efficient in resolving contention, making it a good alternative to the commonly used exponential backoff mechanism.  相似文献   

6.
The binary exponential backoff (BEB) mechanism is applied to the packet retransmission in lots of wireless network protocols including IEEE 802.11 and 802.15.4. In distributed dynamic network environments, the fixed contention window (CW) updating factor of BEB mechanism can’t adapt to the variety of network size properly, resulting in serious collisions. To solve this problem, this paper proposes a backoff algorithm based on self-adaptive contention window update factor for IEEE 802.11 DCF. In WLANs, this proposed backoff algorithm can greatly enhance the throughput by setting the optimal CW updating factor according to the theoretical analysis. When the number of active nodes varies, an intelligent scheme can adaptively adjust the CW updating factor to achieve the maximal throughput during run time. As a result, it effectively reduces the number of collisions, improves the channel utilization and retains the advantages of the binary exponential back-off algorithm, such as simplicity and zero cost. In IEEE 802.11 distributed coordination function (DCF) protocol, the numerical analysis of physical layer parameters show that the new backoff algorithm performance is much better than BEB, MIMD and MMS algorithm.  相似文献   

7.
The IEEE 802.11 standards for wireless local area networks define how the stations of an ad-hoc wireless network coordinate in order to share the medium efficiently. This work investigates the performance of such a network by considering the two different access mechanisms proposed in these standards. The IEEE 802.11 access mechanisms are based on the carrier sense multiple access with collision avoidance (CSMA/CA) protocol using a binary slotted exponential backoff mechanism. The basic CSMA/CA mechanism uses an acknowledgment message at the end of each transmitted packet, whereas the request to send/clear to send (RTS/CTS) CSMA/CA mechanism also uses a RTS/CTS message exchange before transmitting a packet. In this work, we analyze these two access mechanisms in terms of throughput and delay. Extensive numerical results are presented to highlight the characteristics of each access mechanism and to define the dependence of each mechanism on the backoff procedure parameters.  相似文献   

8.
In this paper, contention bandwidth request has been investigated for long term evolution-advanced (LTE-A) networks under extended typical urban based multipath fading channel that displays high delay spread environment. As the choice of preambles has to provide high detection probability under such environments, at the outset, this paper examines various group based preamble selection mechanisms, namely, Type I, Type II and Type III preamble sets. With suitable type of group based preamble, the challenge during contention bandwidth request is the appropriate choice of contention window during contention resolution. The contention window in this paper is chosen based on the indicators of various failure events, namely, probability of collision due to contention, probability of unavailability of bandwidth, probability of channel error and probability of improper detection of Zadoff–Chu sequences. After suggesting a scheme to account the possible failure events, an analytical model for contention-based bandwidth request has been developed for LTE-A networks. In addition, two backoff mechanisms are proposed to resolve contention among user equipment’s effectively and these mechanisms are compared to the existing techniques, namely, binary exponential backoff and uniform backoff. Further, the contention mechanism has been substantiated for varying depth of channel errors. With Type I grouping, the backoff with optimized contention window improves the efficiency by 13.95 %, reduces the access delay by 18.71 % and decreases the dropping probability by 59.33 % than the existing uniform backoff mechanism.  相似文献   

9.
针对无线城域网PMP模式下的竞争问题,提出了一种中心调度的竞争解决方案CSCR(centralized scheduling contention resolution)。通过对每一时间帧内活动用户站(subscriber stations)数目的预测,基站(basestation)给所有用户站提供了一个优化的竞争窗口,所有用户站都采用该窗口独立地参与竞争。理论分析和模拟结果表明,与IEEE802.16推荐的基于二进制指数回退BEB(binary exponential backoff)算法的方案相比,CSCR方案不但易于实现,而且能更加有效地利用无线资源,同时减少请求接入延时。  相似文献   

10.
Best effort services in next generation broadband wireless access (BWA) networks would be more interactive and bandwidth demanding. This attracted a substantial amount of researches to focus on contention bandwidth request mechanisms for best effort services. The contention resolution with code division multiple access (CDMA) based mobile assisted truncated binary exponential backoff (C-MAB) suffers low contention efficiency and high access delay due to the nature of accessing mechanism in worldwide interoperability for microwave access (WiMAX) network that confines the mobile station in estimating the optimum contention window. Further, these performances decrease when transmission failure is modeled with unavailability of bandwidth, collision due to contention, transmission code failure, and channel error. To improve the performances, in this paper, we suggest a contention resolution with CDMA based base station assisted backoff (C-BAB) for orthogonal frequency division multiple access (OFDMA) based WiMAX networks. With C-BAB, the base station computes an optimum contention window by accounting average contention window and probability of failure. With a 2.69% additional overhead at the BS, the proposed C-BAB shows a 32.82% increase in contention efficiency and 24.21% decrease in access delay (25% error rate, q = 0.60 and ranging slot = 64) compared to C-MAB.  相似文献   

11.
Hossam  Tiantong  Hussein T.   《Ad hoc Networks》2005,3(6):717-743
The IEEE 802.11 standard is the most popular Medium Access Control (MAC) protocol for wireless local area networks. However, in an ad-hoc environment, the Point Coordination Function (PCF), defined in the standard, cannot be readily used. This is due to the fact that there is no central authority to act as a Point Coordinator (PC). Peer-to-peer ad-hoc mode in the IEEE 802.11 standard only implements the Distributed Coordination Function (DCF). In this paper, an efficient and on-the-fly infrastructure is created using our proposed Mobile Point Coordinator (MPC) protocol. Based on this protocol, we also develop an efficient MAC protocol, namely MPC–MAC. Our MAC protocol extends the IEEE 802.11 standard for use in multi-hop wireless ad-hoc networks implementing both the DCF and PCF modes of operation. The goal, and also the challenge, is to achieve QoS delivery and priority access for real-time traffic in ad-hoc wireless environments while maintaining backward compatibility with the IEEE 802.11 standard. The performance of MPC–MAC is compared to the IEEE 802.11 DCF-based MAC without MPC. Simulation experiments show that in all cases the use of PCF benefits real-time packets by decreasing the average delay and the discard ratio. However, this may come at the expense of increasing the average delay for non-real-time data. On the other hand, the discard ratio for both real-time and non-real-time packets improves with the use of PCF. Therefore, our MPC–MAC outperforms the standard DCF IEEE 802.11 MAC protocol in multi-hop ad-hoc environments.  相似文献   

12.
Energy efficiency is a measure of the performance of IEEE 802.11 wireless multihop ad hoc networks. The IEEE 802.11 standard, currently used in wireless multihop ad hoc networks, wastes bandwidth capacity and energy resources because of many collisions. Therefore, controlling the contention window size at a given node will increase not only the operating life of the battery but also the overall system capacity. It is essential to develop effective backoff schemes for saving power in IEEE 802.11 wireless multihop ad hoc networks. In this paper, we propose an energy-efficient backoff scheme and evaluate its performance in an ad hoc network. Our contention window mechanism devised by us grants a node access to a channel on the basis of the node’s percentage of residual energy. We use both an analytical model and simulation experiments to evaluate the effective performance of our scheme in an ad hoc network. Our extensive ns-2-based simulation results have shown that the proposed scheme provides excellent performance in terms of energy goodput, end-to-end goodput, and packet delivery ratio, as well as the end-to-end delay.  相似文献   

13.
Development of efficient medium access control (MAC) protocols providing both high throughput performance for data traffic and good quality of service (QoS) support for real-time traffic is the current major focus in distributed contention-based MAC protocol research. In this paper, we propose an efficient contention resolution algorithm for wireless local area networks, namely, the fast collision resolution (FCR) algorithm. The MAC protocol with this new algorithm attempts to provide significantly higher throughput performance for data services than the IEEE 802.11 MAC algorithm and more advanced dynamic tuning backoff (DTB) algorithm. We demonstrate that this algorithm indeed resolves collisions faster and reduces the idle slots more effectively. To provide good fairness performance and to support good QoS for real-time traffic, we incorporate the self-clocked fair queueing algorithm and a priority scheme into the FCR algorithm and come up with the real-time FCR (RT-FCR) algorithm, and show that RT-FCR can simultaneously achieve high throughput and good fairness performance for nonreal-time traffic while maintaining satisfactory QoS support for real-time traffic.  相似文献   

14.
In this paper, we propose a consistent random backoff (CRB) scheme to reduce the channel access delay jitter in voice over wireless local area networks. In the CRB scheme, a contention window (CW) size at each backoff stage is determined by hashing the session identifier and the talk spurt index. Therefore, all packets in the same talk spurt of a session have the same CW sizes if they are transmitted at the same backoff stage. Since a modulo-division operation with the identical maximum CW value is applied, fairness with the legacy backoff scheme (i.e., binary exponential backoff) is also provided. Extensive simulation results demonstrate that the CRB scheme can reduce the channel access delay jitter by 54 %.  相似文献   

15.
In this paper, we propose an effective medium access mechanism to enhance performance of the IEEE 802.11 distributed coordination function (DCF). One of the primary issues of 802.11 is a contention-based medium access control (MAC) mechanism over a limited medium, which is shared by many mobile users. In the original 802.11 DCF, the binary exponential backoff algorithm with specific contention window size is employed to coordinate the competition for shared channel. Instead of binary exponential increase, we adopt linear increase for the contention window that is determined according to the competing number of nodes. We also assume that the access point can broadcast the number of mobile nodes to each station through management frames. An analytical model is developed for the throughput performance of the wireless medium. Using simulation results from the NS2 simulator, we show that our model can accurately predict the system saturation throughput, and can obtain better performance in terms of throughput, fairness, and packet drop.  相似文献   

16.
The distributed coordination function (DCF) of IEEE 802.11 standard adopts the binary exponential backoff (BEB) for collision avoidance. In DCF, the contention window is reset to an initial value, i.e., CWmin, after each successful transmission. Much research has shown that this dramatic change of window size may degrade the network performance. Therefore, backoff algorithms, such as gentle DCF (GDCF), multiplicative increase–linear decrease (MILD), exponential increase–exponential decrease (EIED), etc., have been proposed that try to keep the memory of congestion level by not resetting the contention window after each successful transmission. This paper proposes a multichain backoff (MCB) algorithm, which allows stations to adapt to different congestion levels by using more than one backoff chain together with collision events caused by stations themselves as well as other stations as indications for choosing the next backoff chain. The performance of MCB is analyzed and compared with those of 802.11 DCF, GDCF, MILD, and EIED backoff algorithms. Simulation results show that, with multiple backoff chains and collision events as reference for chain transition, MCB can offer a higher throughput while still maintaining fair channel access than the existing backoff algorithms.  相似文献   

17.
IEEE 802.15.4 is one of the most prominent MAC protocol standard designed to achieve low-power, low-cost, and low-rate wireless personal area networks. The contention access period of IEEE 802.15.4 employs carrier sense multiple access with collision avoidance (CSMA/CA) algorithm. A long random backoff time causes longer average delay, while a small one gives a high collision rate. In this paper, we propose an efficient backoff algorithm, called EBA-15.4MAC that enhances the performance of slotted CSMA/CA algorithm. EBA-15.4MAC is designed based on two new techniques; firstly, it updates the contention window size based on the probability of collision parameter. Secondly, EBA-15.4MAC resolves the problem of access collision via the deployment of a novel Temporary Backoff (TB) and Next Temporary Backoff (NTB). In this case, the nodes not choose backoff exponent randomly as mentioned in the standard but they select TB and NTB values which can be 10–50 % of the actual backoff delay selected by the node randomly. By using these two new methods, EBA-15.4MAC minimizes the level of collision since the probability of two nodes selecting the same backoff period will be low. To evaluate the performance of EBA-15.4MAC mechanism, the network simulator has been conducted. Simulation results demonstrate that the proposed scheme significantly improves the throughput, delivery ratio, power consumption and average delay.  相似文献   

18.
Wireless local area networks (WLANs) based on the IEEE 802.11 standards have been widely implemented mainly because of their easy deployment and low cost. The IEEE 802.11 collision avoidance procedures utilize the binary exponential backoff (BEB) scheme that reduces the collision probability by doubling the contention window after a packet collision. In this paper, we propose an easy‐to‐implement and effective contention window‐resetting scheme, called double increment double decrement (DIDD), in order to enhance the performance of IEEE 802.11 WLANs. DIDD is simple, fully compatible with IEEE 802.11 and does not require any estimation of the number of contending wireless stations. We develop an alternative mathematical analysis for the proposed DIDD scheme that is based on elementary conditional probability arguments rather than bi‐dimensional Markov chains that have been extensively utilized in the literature. We carry out a detailed performance study and we identify the improvement of DIDD comparing to the legacy BEB for both basic access and request‐to‐send/clear‐to‐send (RTS/CTS) medium access mechanisms. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Congestion Control Framework for Ad-Hoc Wireless Networks   总被引:1,自引:0,他引:1  
During the last few years, bandwidth and traffic control have immerged as issues of great importance in ad-hoc wireless networks, requiring sophisticated managing techniques. Moreover, due to the increasing variety of applications and consequently respective need for bandwidth control, such issues are expected to become even more critical in the near future. Main characteristics of MANETs such as multi-hop communication and supporting dynamically varying topologies rapidly and unpredictably change or remain static over long periods of time augments the complexity of the problem as well as the need to efficiently handle it. In order to circumvent those problems, many researchers turn their attention to cross-layer design which provides the possibility to create lightweight and flexible substrate for the demanding ad-hoc wireless networks. This design approach provides critical features that suit the characteristics of ad-hoc wireless networks. This paper proposes a novel, lightweight and efficient cross-layer architecture for congestion control at wireless ad-hoc networks. The performance of this framework is evaluated considering characteristic ad-hoc routing protocols, such as AODV and DSR, in static as well as mobile network topologies using the well known network simulator NS2.  相似文献   

20.
IEEE 802.11-saturation throughput analysis   总被引:1,自引:0,他引:1  
To satisfy the emerging need of wireless data communications, the IEEE is currently standardizing the 802.11 protocol for wireless local area networks. This standard adopts a CSMA/CA medium access control protocol with exponential backoff. We present a simple analytical model to compute the saturation throughput performance in the presence of a finite number of terminals and in the assumption of ideal channel conditions. The model applies to both basic and request-to-send/clear-to-send (RTS/CTS) access mechanisms. Comparison with simulation results shows that the model is extremely accurate in predicting the system throughput  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号