共查询到20条相似文献,搜索用时 0 毫秒
1.
On the selection of shape and orientation of a greenhouse: Thermal modeling and experimental validation 总被引:4,自引:0,他引:4
V.P. Sethi 《Solar Energy》2009,83(1):21-38
In this study, five most commonly used single span shapes of greenhouses viz. even-span, uneven-span, vinery, modified arch and quonset type have been selected for comparison. The length, width and height (at the center) are kept same for all the selected shapes. A mathematical model for computing transmitted total solar radiation (beam, diffused and ground reflected) at each hour, for each month and at any latitude for the selected geometry greenhouses (through each wall, inclined surfaces and roofs) is developed for both east-west and north-south orientation. Computed transmitted solar radiation is then introduced in a transient thermal model developed to compute hourly inside air temperature for each shape and orientation. Experimental validation of both the models is carried out for the measured total solar radiation and inside air temperature for an east-west orientation, even-span greenhouse (for a typical day in summer) at Ludhiana (31°N and 77°E) Punjab, India. During the experimentation, capsicum crop is grown inside the greenhouse. The predicted and measured values are in close agreement. Results show that uneven-span shape greenhouse receives the maximum and quonset shape receives the minimum solar radiation during each month of the year at all latitudes. East-west orientation is the best suited for year round greenhouse applications at all latitudes as this orientation receives greater total radiation in winter and less in summer except near the equator. Results also show that inside air temperature rise depends upon the shape of the greenhouse and this variation from uneven-span shape to quonset shape is 4.6 °C (maximum) and 3.5 °C (daily average) at 31°N latitude. 相似文献
2.
This note presents a simple transient model for predicting the thermal performance of some novel solar water heaters which combine both collection and storage of solar energy. These heaters consist of either (i) an insulated rectangular tank whose top surface is blackened and suitably glazed, or (ii) an insulated open shallow tank with black bottom/inner sides and a top glass cover (shallow solar pond). the heaters are adequately covered with an insulation during the night to reduce the heat losses. the proposed model is based on different characteristic equations during sunshine and off-sunshine hours. It is seen that the model predicts the water temperature in close agreement with the experimental observations and earlier theoretical investigations. 相似文献
3.
Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating 总被引:5,自引:0,他引:5
The continuous increase in the level of greenhouse gas emissions and the rise in fuel prices are the main driving forces behind the efforts for more effectively utilize various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. In this study, the thermal performance of a phase change thermal storage unit is analyzed and discussed. The storage unit is a component of ten pieced solar air collectors heating system being developed for space heating of a greenhouse and charging of PCM. CaCl26H2O was used as PCM in thermal energy storage with a melting temperature of 29 °C. Hot air delivered by ten pieced solar air collector is passed through the PCM to charge the storage unit. The stored heat is utilized to heat ambient air before being admitted to a greenhouse. This study is based on experimental results of the PCM employed to analyze the transient thermal behavior of the storage unit during the charge and discharge periods. The proposed size of collectors integrated PCM provided about 18–23% of total daily thermal energy requirements of the greenhouse for 3–4 h, in comparison with the conventional heating device. 相似文献
4.
Thermal and economical analysis of a central solar heating system with underground seasonal storage in Turkey 总被引:1,自引:0,他引:1
Thermal performance and economic feasibility of two types of central solar heating system with seasonal storage under four climatically different Turkey locations are investigated. The effects of storage volume and collector area on the thermal performance and cost are studied for three load sizes. The simulation model of the system consisting of flat plate solar collectors, a heat pump, under ground storage tank and heating load based on a finite element analysis and finite element code ANSYS™ is chosen as a convenient tool. In this study, the lowest solar fraction value for Trabzon (41°N) and the highest solar fraction value for Adana (37°N) are obtained. Based on the economic analysis, the payback period of system is found to be about 25–35 years for Turkey. 相似文献
5.
This work presents a simple mathematical model of a greenhouse system whose top surface is covered by a solar still. The effect of various parameters such as relative humidity, ventilation/infiltration, heat capacity of basin water and plants, thickness of roof and water distillate output on the performance of the greenhouse system has been studied. It is found that the proposed system provides fresh water to cater to the needs of plants inside the greenhouse. 相似文献
6.
A straightforward transient analysis for the heating of a fluid through a semi-transparent plate is presented in this note. It is concluded that the present theory also validates the experimental results of Lumsdaine. 相似文献
7.
This paper investigates thermal mixing caused by the inflow from one or two round, horizontal, buoyant jets in a water storage tank, which is part of a thermal solar installation. A set of experiments was carried out in a rectangular tank with a capacity of 0.3 m3, with one or two constant temperature inflows. As a result, two correlations based on temperature measurements have been developed. One of the correlations predicts the size of a zone of homogenous temperature, referred to herein as the mixing zone, which develops when a single hot inflow impinges on the opposite wall of the tank. The other identifies the degree of mixing resulting from the interaction between a hot inflow and a cold inflow located below the hot one. The correlations are combined with energy balances to predict the amount of hot water available in a tank with open side inlets and the corresponding temperatures of the outflows. Outdoor measurements were also performed in a solar installation, in which a commercial water storage tank with a 1.5 m3 capacity, heated by a solar collector array with a useful surface area of 42.2 m2, drives a LiBr-H2O absorption chiller. Comparison of the predicted and measured outflow temperatures under a variety of weather conditions shows a maximum difference of 3 °C. 相似文献
8.
Numerical and experimental analysis of convection heat transfer in passive solar heating room with greenhouse and heat storage 总被引:3,自引:0,他引:3
In this paper, heat transfer and air flow in passive solar heating room with greenhouse and heat storage are studied. Thermal insulation of solar heating room has significant effects on temperature distribution and airflow in the heating chamber of this solar system. Heat transfer and air flow in a rock bed, which is used as solar absorber and storage layer, are also studied. If porosity is kept within certain range, increasing the rock size causes an increase of the capability of thermal storage and heating effects; increasing the porosity of thermal storage materials results in an increase of the bed temperature but a decrease of the rock mass. The specific heat capacity and thermal conductivity have a remarkable effect on the average temperature of rock bed. All these factors should be taken into account when designing a solar heating system. 相似文献
9.
Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector 总被引:2,自引:0,他引:2
Analysis of energy and exergy has been performed for a latent heat storage system with phase change material (PCM) for a flat-plate solar collector. CaCl2·6H2O was used as PCM in thermal energy storage (TES) system. The designed collector combines in single unit solar energy collection and storage. PCMs are stored in a storage tank, which is located under the collector. A special heat transfer fluid was used to transfer heat from collector to PCM. Exergy analysis, which is based on the second law of thermodynamics, and energy analysis, which is based on the first law, were applied for evaluation of the system efficiency for charging period. The analyses were performed on 3 days in October. It was observed that the average net energy and exergy efficiencies are 45% and 2.2%, respectively. 相似文献
10.
An analysis of the temperature stratification inside an Integrated Collector Storage Solar Water Heater (ICS-SWH) was carried out. The system takes the form of a rectangular-shaped box incorporating the solar collector and storage tank into a single unit and was optimised for simulation in Scottish weather conditions. A 3-month experimental study on the ICS-SWH was undertaken in order to provide empirical data for comparison with the computed results. Using a previously developed macro model; a number of improvements were made. The initial macro model was able to generate corresponding water bulk temperature in the collector with a given hourly incident solar radiation, ambient temperature and inlet water temperature and therefore able to predict ICS-SWH performance. The new model was able to compute the bulk water temperature variation in different SWH collectors for a given aspect ratio and the water temperature along the height of the collector (temperature stratification). Computed longitudinal temperature stratification results obtained were found to be in close agreement with the experimental data. 相似文献
11.
Thermal storage is a key subsystem in any solar thermal application. It stores thermal energy during periods of high solar irradiation so it can be used when solar irradiation is low and during the night. The energy extraction efficiency is influenced by design and by such operational factors as the state of charge of the thermal storage under normal conditions, a solar thermal storage system is in a partially charged state. This study was aimed at developing charged thermal storage with emphasis on the effect of inlet design, storage tank wall material, and the presence of fluid dead zones. 相似文献
12.
An unsteady analysis of a cylindrical solar water heater has been performed. The physical parameters which govern the physical system are identified. The governing equations have been solved using the fourth order Runge-Kutta method for different values of the parameters. A good agreement between the numerical and experimental results has been obtained. 相似文献
13.
Thermal modeling of a natural convection greenhouse drying system for jaggery: An experimental validation 总被引:1,自引:0,他引:1
The aim of this work is to develop a thermal model so as to predict the jaggery temperature, the greenhouse air temperature and the moisture evaporated (jaggery mass during drying), during the drying of jaggery under natural convection conditions. The experiment was conducted separately for 0.75 kg and 2.0 kg of jaggery pieces having dimensions of 0.03 × 0.03 × 0.01 m3 for complete drying. The jaggery was dried in a roof-type even span greenhouse with floor area of 1.20 × 0.78 m2. Experiment was carried out during February 5–8, 2004 at IIT Delhi (28°35′N 72°12′E) from 10 am to 5 pm. A computer program was developed in MATLAB software so as to calculate the jaggery temperature, the greenhouse air temperature and the moisture evaporated and was also used to predict the thermal performance of the greenhouse on the basis of solar intensity and ambient temperature. The software developed was experimentally validated. It was shown that the analytical and experimental results for jaggery drying are in good agreement. 相似文献
14.
《Applied Thermal Engineering》2014,62(1):156-170
Aquifers are underground porous formations containing water. Confined aquifers are the formations surrounded by two impermeable layers, called cap rocks and bed rocks. These aquifers are suitable for seasonal thermal energy storage.In the present study, a confined aquifer was considered to meet the cooling and heating energy needs of a residential complex located in Tehran, Iran. Three different alternatives were analyzed in this aquifer thermal energy storage (ATES), including: using ATES for cooling alone, for cooling and heating, as a heat pump, and for heating alone, employing flat plate solar energy collectors. A numerical simulation, based on the finite difference method, was carried out for velocity and temperature distributions as well as the heat transfer in the aquifer. The thermal energy recovery factor and the annual coefficient of performance of the system were determined under various schemes of operation, revealing that the combination of the ATES with the heat pump, to meet both cooling and heating needs of the complex, is the best. The study was repeated for different aquifer properties. 相似文献
15.
A theoretical calculation of the degradation of heat in stratified thermocline storage has been carried out based on a conduction model. Since this neglects mixing, eddy currents and other degradation mechanisms, it provides an upper limit to the performance of a stratified thermocline storage tank. The calculation can be carried out for any selection of dimensions, temperatures, and choice of insulation. The results indicate that heat conduction through the insulation to the ambient can be a larger loss mechanism than conduction across the thermocline, except in large diameter tanks with very heavy insulation. With a properly designed tank (length/diameter > 10, diameter > 1.5 ft, insulation resistance > 20 hr ft2 °F/B.t.u.) efficient storage of heat through a daily cycle should be routinely simple based on conduction. Experiments were carried out in static and dynamic modes. In the static experiments, a fixed thermocline was established, and temperatures were monitored at spatial intervals above and below the thermocline. Some mixing occurred during formation of the thermocline, which caused an initial broadening not present in the calculations. Aside from this, it was found that the spreading of the thermocline was only slightly faster than predicted by conduction theory. If a thinner wall tank had been available, agreement between experiment and theory probably would have been closer. Dynamic experiments were conducted with a moving thermocline (both upward and downward). The results indicate preservation of the initial thermocline was excellent at linear flow rates below about 0.2 ft/min. It is believed that stratified thermocline storage has been shown to be technically viable. 相似文献
16.
The thermal response of a multi-tank thermal storage was studied under variable charge conditions. Tests were conducted on an experimental apparatus that simulated the thermal charging of the storage system by a solar collector over predetermined (prescribed) daylong periods. The storage was assembled from three standard 270 L hot-water storage tanks each charged through coupled, side-arm, natural convection heat exchangers which were connected in either a series- or parallel-flow configuration. Both energy storage rates and tank temperature profiles were experimentally measured during charge periods representative of two consecutive clear days or combinations of a clear and overcast day. During this time, no draw-offs were conducted. Of particular interest was the effect of rising and falling charge-loop temperatures and collector-loop flow rate on storage tank stratification levels. Results of this study show that the series-connected thermal storage reached high levels of temperature stratification in the storage tanks during periods of rising charge temperatures and also limited destratification during periods of falling charge temperature. This feature is a consequence of the series-connected configuration that allowed sequential stratification to occur in the component tanks and energy to be distributed according to temperature level. This effect was not observed in the parallel charge configuration. A further aspect of the study investigated the effect of increasing charge-loop flow rate on the temperature distribution within the series-connected storage and showed that, at high flow rates, the temperature distributions were found to be similar to those obtained during parallel charging. A disadvantage of both the high-flow series-connected and parallel-connected multi-tank storage is that falling charge-loop temperatures, which normally occur in the afternoon, tend to mix and destratify the storage tanks. 相似文献
17.
An analytical and experimental investigation of transient turbulent two-dimensional charging and discharging of a sensible heat storage tank has been conducted. Parametric studies showed that the turbulent mixing factor due to hydrodynamic disturbances at the inlet ports is the most significant item in the performance of thermal stratification storage tanks. Furthermore, the effect of the aspect ratio and convection at the walls in promoting stratification have been studied. Comparison with experimental data showed the capability of the present analytic approach to accommodate, with a satisfactory degree of accuracy, such problems. 相似文献
18.
Thermal ratcheting is a critical phenomenon associated with the cyclic operation of dual-medium thermocline tanks in solar energy applications. Although thermal ratcheting poses a serious impediment to thermocline operation, this failure mode in dual-medium thermocline tanks is not yet well understood. To study the potential for the occurrence of ratcheting, a comprehensive model of a thermocline tank that includes both the heterogeneous filler region as well as the composite tank wall is formulated. The filler region consists of a rock bed with interstitial molten salt, while the tank wall is composed of a steel shell with two layers of insulation (firebrick and ceramic). The model accounts separately for the rock and molten-salt regions in view of their different thermal properties. Various heat loss conditions are applied at the external tank surface to evaluate the effect of energy losses to the surroundings. Hoop stresses, which are governed by the magnitude of temperature fluctuations, are determined through both a detailed finite-element analysis and simple strain relations. The two methods are found to yield almost identical results. Temperature fluctuations are damped by heat losses to the surroundings, leading to a reduction in hoop stresses with increased heat losses. Failure is prevented when the peak hoop stress is less than the material yield strength of the steel shell. To avoid ratcheting without incurring excessive energy loss, insulation between the steel shell and the filler region should be maximized. 相似文献
19.
S. C. Kaushik 《国际能源研究杂志》1982,6(3):253-269
This paper presents a brief review of the available latent heat storage systems for solar energy utilization. A new concept of latent heat storage of solar energy via the refrigerant-absorbent mass storage in absorption cycle heat pump systems used for solar space heating/cooling has been proposed and assessed thermodynamically. A computer modelling and numerical simulation study shows that the concept of refrigerant storage is fundamentally sound, technically feasible and yields the following advantages over other storage methods: (i) the storage capacity per unit volume is high as the latent heat of vaporization of the refrigerant is high; (ii) the heat loss from the storage to the surroundings is minimum as the storage temperature is near the ambient; (iii) prolonged energy storage is possible with no degradation in system performance and hence suitable for combined solar heating and airconditioning. The effects of operating parameters on the energy storage concentration and storage efficiency have been studied in detail. 相似文献
20.
This paper describes a simulation model that reproduces the performance of parabolic trough solar thermal power plants with a thermal storage system. The aim of this model is to facilitate the prediction of the electricity output of these plants during the various stages of their planning, design, construction and operation. Model results for a 50 MWe power plant are presented and compared to real data from an equivalent power plant currently operated by the ACS Industrial Group in Spain. 相似文献