首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
Terpene profiles in cheese can be considered a ‘terroir’ fingerprint as the information contained in it should enable the pastures on which the animals were fed to be recognised. Yet a certain elasticity of the signature must be taken into account when determining authentication strategies, since products acknowledged as containing a common signature may have undergone certain procedures, such as cheese making and milk pasteurisation, that could have potentially altered their terpene profiles. In this study, Cantal and Saint‐Nectaire‐type cheeses were made from both raw and pasteurised milk from the same herd of dairy cows that had been grazed on natural grassland. Cheeses from raw and pasteurised milk were made from the same milking on the same days. Cantal and Saint‐Nectaire‐type cheeses were made on 4 different days, alternatively over four weeks. The terpenes in the cheese fat were analysed by dynamic headspace/gas chromatography/mass spectrometry. A great diversity of monoterpenes, sesquiterpenes and oxygen‐containing derivatives were identified. The major terpenes identified in most cheeses were β‐caryophyllene, α‐ and β‐pinene and limonene. Milk pasteurisation did not induce changes in the terpene profile of the cheese. Significant differences (p < 0.001) were observed between Cantal and Saint‐Nectaire cheeses: α‐pinene, β‐myrcene and β‐phellandrene were, respectively, three, five and five times more abundant in Cantal cheese, while tricyclene, α‐phellandrene and geraniol were found exclusively in Cantal cheese. In contrast, unidentified sesquiterpenes with retention indices (KI) = 1342 and 1511, α‐cubebene, longifolene and γ‐elemene were more abundant or exclusively found in Saint‐Nectaire cheese. A significant relationship with the date of milking (p < 0.01) was observed for α‐pinene and tricyclene in Cantal, for β‐myrcene, δ‐3‐carene, p‐cymene and α‐terpinene in Saint‐Nectaire cheese. Copyright © 2005 Society of Chemical Industry  相似文献   

2.
The antifungal effects of essential oils (EOs) on cultures of the known cheese fungal contaminants Penicillium spp. were evaluated. Cinnamon leaf and bark EOs were the most effective among 8 EOs tested. The main components of both cinnamon EOs were eugenol, cinnamaldehyde, and linalool. Both inhibited growth of Penicillium spp. at a concentration of 10% v/v (2,000 ppm/mm2) on a lawn cell plate. When tested using 3 commercially available cheese starters, cinnamon EOs showed no effect against the FD-DVS ABT-5 cheese starter. However, growth of lactobacilli was inhibited in the presence of ≥10% (v/v) of leaf and bark EOs for the KAZU 1 starter, and ≥5% (v/v) for the FD-DVS FLORA-DANICA starter. A concentration of 4,000 ppm/mm2 of cinnamon EOs completely inhibited growth of the Penicillium spp. that naturally contaminates the surface of Appenzeller cheese.  相似文献   

3.
Abstract: In the present study the effects of individual and combined essential oils (EOs) extracted from onion (Allium
cepa
L.) bulb and garlic (Allium sativum L.) clove on the growth of Aspergillus versicolor and sterigmatocystin (STC) production were investigated. The EOs obtained by hydrodistillation were analyzed by GC/MS. Twenty one compounds were identified in onion EO. The major components were: dimethyl‐trisulfide (16.64%), methyl‐propyl‐trisulfide (14.21%), dietil‐1,2,4‐tritiolan (3R,5S‐, 3S,5S‐ and 3R,5R‐ isomers) (13.71%), methyl‐(1‐propenyl)‐disulfide (13.14%), and methyl‐(1‐propenyl)‐trisulfide (13.02%). The major components of garlic EO were diallyl‐trisulfide (33.55%), and diallyl‐disulfide (28.05%). The mycelial growth and the STC production were recorded after 7, 14, and 21 d of the A. versicolor growth in Yeast extract sucrose (YES) broth containing different EOs concentrations. Compared to the garlic EO, the onion EO showed a stronger inhibitory effect on the A. versicolor mycelial growth and STC production. After a 21‐d incubation of fungi 0.05 and 0.11 μg/mL of onion EO and 0.11 μg/mL of garlic EO completely inhibited the A. versicolor mycelial growth and mycotoxins biosynthesis. The combination of EOs of onion (75%) and garlic (25%) had a synergistic effect on growth inhibition of A. versicolor and STC production. Practical Application: A substitution of synthetic preservatives with natural antimicrobial compounds in food safety to control fungal contamination and mycotoxin production.  相似文献   

4.
Cinnamon (Cinnamomum zeylanicum Blume, syn C verum JS Presl, family Lauraceae) is an important spice and aromatic tree cultivated in Sri Lanka and India. On steam distillation, different parts of cinnamon yield volatile oils of varying composition. In the present investigation the profiles of essential oils isolated from tender twigs bearing reproductive parts, from pedicels of buds and flowers, from buds and flowers, from pedicels of fruits and from fruits were analysed by gas chromatography (GC) and GC/mass spectrometry (GC/MS). The essential oil yields of the different plant parts were: tender twigs, 0.40%; pedicels of buds and flowers, 0.36%; buds and flowers, 0.04%; pedicels of fruits, 0.33%; fruits, 0.32%. The tender twig oil was richer in α‐phellandrene (3.4%), limonene (1.6%) and (E)‐cinnamaldehyde (4.0%). The volatile oils from pedicels were richer in neryl acetate (1.4–2.0%), (E)‐cinnamyl acetate (58.1–64.5%) and β‐caryophyllene (9.6–11.1%). Higher amounts of (Z)‐cinnamyl acetate (6.1%), α‐humulene (2.2%), δ‐cadinene (2.2%), humulene epoxide I (5.0%), α‐muurolol (4.9%) and α‐cadinol (2.4%) were observed in the oil of buds and flowers. The fruit oil showed greater concentrations of α‐pinene (4.2%), β‐pinene (1.9%) and linalool (27.4%). However, all the oils contained linalool (3.6–27.4%), (E)‐cinnamyl acetate (22.0–64.5%) and β‐caryophyllene (6.9–11.1%) as their major compounds. This is the first report on the oil profiles of pedicels and of buds and flowers of cinnamon. © 2002 Society of Chemical Industry  相似文献   

5.
BACKGROUND: Nine monoterpenes (δ‐3‐carene, p‐cymene, limonene, β‐myrcene, (E)‐ and (Z)‐β‐ocimene, α‐phellandrene, α‐terpinene, γ‐terpinene), seven oxygenated monoterpenes (1,8‐cineole, linalool, (E)‐ and (Z)‐linalool oxide, 4‐terpinenol, α‐terpineol, α‐terpinolene) and one sesquiterpene (β‐cedrene) were investigated for their degradability in the rumen microbial ecosystem. These molecules were identified as dominant terpenes in the winter and spring diets of milking goats in Basilicata (southern Italy). RESULTS: All terpenes were tested at 3.33 µL L?1 for 24 h using in vitro incubation with mixed rumen bacteria from dairy goats. Oxygen‐containing compounds were those recovered at the highest levels (89% of (E)‐linalool oxide, 93% of (Z)‐linalool oxide, 91% of 1,8‐cineole, 82% of terpineol and 72% of 4‐terpinenol), except linalool. The linear alkenes β‐myrcene and β‐ocimene almost completely disappeared. Results were more variable among cyclic alkenes, with recovery rates ranging from 50% in the case of limonene to less than 1% for α‐phellandrene. 17% of the only sesquiterpene of the group, β‐cedrene, was recovered. CONCLUSION: Recovery rates differed markedly among terpenes, partly in relation to the presence of oxygen and rings in the molecules. These observations should contribute to a better understanding of the changes in composition between the diet and milk terpenes. Copyright © 2008 Society of Chemical Industry  相似文献   

6.
BACKGROUND: California is the second largest cultivator of pistachios, producing over 375 million pounds and a revenue of $ 787 million in 2009. Despite the agricultural and economic importance of pistachios, little is known regarding their actual volatile emissions, which are of interest owing to their potential roles as semiochemicals to insect pests. RESULTS: The ex situ volatile analysis of leaves from Pistacia atlantica, P. chinensis, P. lentiscus, P. palaestina, P. terebinthus, P. vera and P. weimannifolia demonstrated emission differences between species as well as between female and male leaves. Leaves from the female P. vera cultivars Bronte, Damghan, II, III, Kerman and Ohadi as well as fruits of P. atlantica, P. chinensis, P. lentiscus, P. palaestina, P. terebinthus and P. vera (cultivars II, III, Kaleh, Kerman, Momtaz and Ohadi) showed differences in the composition and relative quantity of major volatiles. The compounds in highest relative quantities from the various analyses were sabinene, Δ3‐carene, β‐myrcene, α‐phellandrene, limonene, (Z)‐ocimene, (E)‐β‐ocimene and α‐terpinolene. CONCLUSION: This is the first ex situ survey of fruit and leaf volatile emissions from California‐grown Pistacia species and a number of corresponding cultivars. The study provides an overview of the major and minor volatile emissions and also offers evidence of chemotypes based on monoterpenes. The results highlight the dissimilarity of major components detected between ex situ volatile collection and essential oil analysis. Published 2011 by John Wiley & Sons, Ltd.  相似文献   

7.
Essential oils obtained by simultaneous distillation–extraction (SDE) from leaves, petioles and roots of three types of parsley (turnip‐rooted, plain leaf and curly leaf type), sown on three different dates, were analysed by GC‐MS (gas chromatography–mass spectrometry) analysis. Parsley plants were found to produce mainly β‐phellandrene, 1,3,8‐p‐menthatriene, α‐,p‐dimethylstyrene, myristicin, β‐myrcene and apiole. In some cases α‐ and β‐pinene were also found, whereas β‐elemene was detected, especially in the curly leaf type. The growth stage, plant tissue and date of sowing, as well as the climate conditions, all had a significant effect on the essential oil composition by altering the ratio of the above substances. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
BACKGROUND: Soy‐based products have received much attention lately as dairy replacers and carriers for probiotics, without the cholesterol and lactose intolerance factors. We have previously developed a soy cream cheese product and would like to evaluate its suitability as a carrier for probiotic microorganisms. Soy cream cheese is commercially uncommon, while a probiotic soy cream cheese is yet to be available in the market. RESULTS: Five strains of probiotics were screened for their α‐galactosidase activity. Lactobacillus acidophilus FTCC 0291 showed the highest α‐galactosidase‐specific activity and was incorporated into soy cream cheese for a storage study of 20 days at 25 and 4 °C. L. acidophilus FTCC 0291 in soy cream cheese at both storage temperatures maintained a viability exceeding 107 CFU g?1 over storage. Oligosaccharide and reducing sugar analyses indicated that L. acidophilus FTCC 0291 was capable of utilizing the existing reducing sugars in soymilk and concurrently hydrolyzing the oligosaccharides into simpler sugars for growth. L. acidophilus FTCC 0291 also produced organic acids, leading to decreased pH. Under low pH and high organic acid concentration, the growth of total aerobes and anaerobes was significantly (P < 0.05) suppressed compared to the control. The hydrolysis of protein in soymilk produced essential growth factors such as peptides and amino acids that may have promoted the growth of L. acidophilus FTCC 0291 and the release of bioactive peptides with in vitro angiotensin I‐converting enzyme inhibitory activity. CONCLUSION: This study showed that soy cream cheese could be used as a carrier for probiotic bacteria, with potential antihypertensive property. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
Essential oils (EOs) are natural products obtained from aromatic plants. Steam distillation and hydrodistillation are the most commonly used methods for the extraction of EOs at laboratory scale. They have been widely studied due to their potential in the food industry. EO can be used in food in order to prolong the shelf-life, and additionally, they can reduce or replace synthetics additives. Their effectiveness can be confirmed in antimicrobial and antioxidant tests performed, in general, by diffusion test in agar and DPPH? assay, respectively. Volatile compounds are present in EOs, a role in their biological activities. In this line of thought, chromatography techniques can be applied to identify the main volatile compounds present in EOs. In general, EOs extend food stability during storage, inhibiting the growth of spoilage or pathogenic microorganisms and protecting against oxidation. It is important to evaluate the responsible compounds for the biological activities of EOs and determine their utilization limits, including their safety. Highly variable composition with source species, plant parts, and/or extraction methods appears to play important roles in the variability of EO biological activities. This review provides a concise and critical insight in the use of EOs with emphasis in food applications.  相似文献   

10.
Fuzhuan brick‐tea is a popular fermented Chinese dark tea because of its typical fungal aroma. Fungal growth during the production process is the key step in achieving the unique colour, aroma and taste of Fuzhuan brick‐tea. To further understand the generation of the characteristic aroma, changes in the main volatile compounds of Fuzhuan brick‐tea during the fungal growth stage were studied by gas chromatography/mass spectrophotometry. The results showed that the content of volatile compounds, especially aldehyde compounds with stale aroma such as (E)‐2‐pentenal, (E)‐2‐hexenal, 1‐penten‐3‐ol, (E, E)‐2,4‐heptadienal and (E, Z)‐2,4‐heptadienal, increased significantly in fermented tea samples. The concentration of terpene alcohols with flower aroma also increased notably during the fermentation process. The compounds with stale and flower aromas in combination with some volatile components of the raw material contributed to the characteristic ‘fungal/flower’ aroma of Fuzhuan brick‐tea. Microbial metabolism during the fermentation process probably played the key role in the generation of characteristic aromatic compounds of Fuzhuan brick‐tea. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
BACKGROUND: Increasing evidence of fungicide‐resistant toxinogenic and pathogenic fungal species is obvious. Looking for new possibilities of antifungal treatment or sources of antifungal substances is a major problem. Some medicinal plants exert strong antifungal properties and could be conveniently used as a promising alternative source for presently problematic antifungal treatment in many areas with respect to their natural origin. Methanol extracts of 46 medicinal plants from the Eurasian area were used in a screening assay for antifungal activity in this study. The growth inhibitory effect was tested against six significant pathogenic and toxinogenic fungal species: Fusarium oxysporum, F. verticillioides, Penicillium expansum, P. brevicompactum, Aspergillus flavus and A. fumigatus. RESULTS: For 14 plant species, the possibility of using them as natural fungicides was indicated. The extract from Grindelia camporum showed significant activity against all target fungal species. The most sensitive target fungus was the toxinogenic and human pathogenic species A. fumigatus. CONCLUSION: This study has identified 14 extracts of medicinal plants with a potential use as an antifungal treatment in various areas. One of them showed promising efficiency against all selected significant pathogenic and toxinogenic fungal species. Copyright © 2010 Society of Chemical Industry  相似文献   

12.
BACKGROUND: Although the volatiles present in mushrooms and fungi have been investigated by many researchers, including Antrodia camphorata in submerged fermentation, there are few data available regarding changes in volatile compounds during fermentation. Our research has revealed that solid state fermentation of A. camphorata is highly odiferous compared with submerged cultures and the odor changed with increasing culture time. Therefore the aim of this study was to investigate the changes in volatile compound composition of A. camphorata during solid state fermentation. RESULTS: Altogether, 124 major volatile compounds were identified. The volatile compounds produced by A. camphorata during growth in solid state fermentation were quite different. Oct‐1‐en‐3‐ol, octan‐3‐one and methyl 2‐phenylacetate were predominant in exponential growth phase production, while the dominant volatiles produced in stationary phase were octan‐3‐one and methyl 2‐phenylacetate. In stationary phase, lactone compounds in A. camphorata, such as 5‐butyloxolan‐2‐one, 5‐heptyloxolan‐2‐one, 6‐heptyloxan‐2‐one, contributed greatly to peach and fruit‐like flavor. Terpene and terpene alcohol compounds, such as 1‐terpineol, L ‐linalool, T‐cadinol, (E, E)‐farnesol, β‐elemene, cis‐α‐bisabolene and α‐muurolene, made different contributions to herbal fresh aroma in A. camphorata. Nineteen volatile sesquiterpenes were detected from solid state fermentation of A. camphorata. The compounds 5‐n‐butyl‐5H‐furan‐2‐one, β‐ionone, (?)‐caryophyllene oxide, aromadendrene oxide, diepi‐α‐cedrene epoxide, β‐elemene, α‐selinene, α‐muurolene, azulene, germacrene D, γ‐cadinene and 2‐methylpyrazine have not hitherto been reported in A. camphorata. CONCLUSION: The preliminary results suggest that the aroma‐active compounds produced by A camphorata in solid state fermentation might serve as an important source of natural aroma compounds for the food and cosmetic industries or antibiotic activity compounds. The sesquiterpenes could be identified as possible taxonomic markers for A. camphorata. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
Hairy root cultures of Cichorium intybus L produced volatile aromatic compounds under the influence of fungal elicitors. It was observed that the intensity of the production of volatile aromatic compounds in the hairy root cultures of C intybus with 10 ml l?1 media filtrate (MF) of Phytopthora parasitica var nicotiana reached a maximum on the 21st day, as seen by a quantitative flavour profiling method. It was noted that, during the time course, treatment with 10 ml l?1 MF of P parasitica to the MS basal liquid medium containing hairy root cultures of chicory resulted in changed root morphology with cell wall thickening and shear. The components of the volatile aromatic compounds were identified as a propyl isovalerate, undecanal, nonanol, isoamyl nonanoate and 2‐decene‐1‐ol. The mass spectra of all these compounds matched well with the NIST/EPA/NIH library and by comparing with the Kovats index of volatile compounds. The major fruity note was due to the presence of two of the major volatile components, namely propyl isovalerate and isoamyl nonanoate, which were also produced at higher concentration on day 21. This response of chicory hairy root cultures to the fungal elicitor producing volatile aromatic compounds would imply eco‐physiological functions, possibly for plant defence system. Copyright © 2003 Society of Chemical Industry  相似文献   

14.
The purpose of this study was to determine the effects of fungal lipase from Mucor miehei and a bacterial neutral protease from Bacillus subtilis alone and combined with a starter culture on ripening properties of traditional Turkish Mihalic cheese. The use of protease with lipase (Cult + Prot + Lip) resulted in better flavour and texture with accelerated ripening. The obtained results pointed out that the gross compositions of the cheeses were changed by the type of enzymes and ripening time (P < 0.01). The acid degree value (ADV) of all cheeses showed a linear increase with ripening. The highest lipolysis rate was noted in lipase‐added cheese batch (as 5.56 ADV) with highest γ‐CN ratio and β‐CN degradation. At the end of ripening time, it was observed that αs‐CN ratios decreased in starter‐added (Cult), starter + protease–added (Cult + Prot), and protease‐added (Prot) cheese batches. The use of protease with lipase (Cult + Prot + Lip) resulted in better flavour and texture with accelerated ripening. Protease‐added cheeses, which were characterized by bitterness and crumbly textural properties owing to the intense breakdown of β‐casein, scored lower than lipase‐added cheeses. It was determined that the use of mesophilic aromatic starter culture with lipase and protease could be used to accelerate ripening of Mihalic cheese made from pasteurised milk.  相似文献   

15.
BACKGROUND: Antioxidants prevent rancidity (lipid peroxidation) and natural antioxidants, e.g., α‐tocopherol, likely provide additional value to oil‐based food products because of their health benefits. Conjugated linoleic acid (CLA) has potential health benefits and may exhibit antioxidant properties. The main aim of this study was to compare the antioxidant efficacy of α‐tocopherol, trans‐10, cis‐12‐CLA and cis‐9, trans‐11‐CLA (in graded concentrations) added to antioxidant‐stripped corn oil. RESULTS: As compared to α‐tocopherol, both CLA isomers displayed significant inhibition of corn oil lipid peroxidation induced by copper. Inhibition of thiobarbituric acid reactive substances (TBARS) were CLA concentration dependent for both isomers but with significant inhibition occurring at 0.1 and 1 ppm of CLA isomers or α‐tocopherol, respectively (P < 0.05). Graded concentrations of α‐tocopherol, and for both CLA isomers and time, had significant effects on TBARS formation (P < 0.0001). There were significant effects in interactions between graded concentrations and time for both CLA isomers (P < 0.0001) but not for α‐tocopherol (P > 0.05). CONCLUSION: CLA compounds could serve as useful food antioxidants and provide additional value because of their potential bioactivity in disease prevention. Copyright © 2007 Society of Chemical Industry  相似文献   

16.
Stage of lactation, use of bulk milk or milk from individual flocks, and cheese‐making in farmhouse or industrial factory are important factors affecting the production and quality of Idiazabal cheese. The volatile composition of cheese samples made from raw ewe's milk in farmhouses or industrial plants at two different times of the year and aged for 90 and 180 days was analysed by dynamic headspace coupled to GC‐MS. Short‐chain fatty acids, primary and secondary alcohols, methyl ketones and ethyl esters were the most abundant compounds in the aroma of Idiazabal cheese samples. Differences in the volatile composition were found between farmhouse and industrial cheeses made at different times of the year and ripened for 90 or 180 days. Likewise, the sensory profiles of the farmhouse and industrial cheeses were significantly different, regardless of the time of the year and ripening time. The results for the principal component analysis (PCA) performed on the sensory attributes of the cheese samples showed two PCs defined as ‘farmhouse flavour factor’ and ‘industrial flavour factor’. Farmhouse cheeses showed high scores for buttery, milky and toasty odours, and buttery and nutty flavours, whereas industrial cheeses showed high scores for sharp, rennet and brine odours, and rennet and rancid flavours. The percentages of methyl ketones such as 3‐hydroxy‐2‐butanone, 2‐butanone, 2‐pentanone and 2‐heptanone, and acids such as n‐propanoic, 2‐methylpropanoic and 3‐methylbutanoic acids were higher in farmhouse cheeses than in industrial cheeses. On the other hand, the percentages of esters such as ethyl butanoate and ethyl hexanoate, and alcohols such as 3‐methyl‐1‐butanol, and acids like n‐hexanoic acid were higher in industrial cheeses than in farmhouse cheeses. Relationships between sensory attributes and volatile compounds were studied on the basis of the differences found in sensory profile and volatile composition between farmhouse and industrial cheeses. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
In this study, four different types of mould‐ripened Civil cheese were manufactured. A defined (nontoxigenic) strain of a Penicillium roqueforti (SC 509) was used as secondary starter for the manufacture of mould‐ripened Civil cheese with and without addition of the whey cheese Lor; in parallel, secondary starter‐free counterparts were manufactured. A total of 83 compounds were identified. Ketones, alcohols and esters were the principal classes of volatile components. Principal component analysis of the headspace volatiles grouped cheeses by age and type. P. roqueforti inoculated cheese was clearly separated from the other cheeses at 180 days of ripening, and these cheeses were characterised with high levels of ketones (e.g., 2‐butanone, 2‐heptanone). Differences in the panel scores between the cheese samples were not significant during the first stage of ripening (up to 60 days); as ripening proceeded, these differences were become evident and P. roqueforti inoculated cheeses received higher scores than others. Addition of Lor in the manufacture of mould‐ripened Civil cheese caused lower points by the sensory panel, and the cheese inoculated with P. roqueforti and Lor‐free was the best type of mould‐ripened Civil cheese. The results showed that the use of P. roqueforti in the manufacture of mould‐ripened Civil cheese has significant impact on the volatile profiles and sensory attributes.  相似文献   

18.
ABSTRACT

The present study examines the influence of the natural preservatives carvacrol, eugenol, trans-cinnamaldehyde and the essential oil (EO) Origanum vulgare on ochratoxin A (OTA) production and the mycelial growth of two food-related moulds, Penicillium verrucosum and Aspergillus westerdijkiae, by broth macro-dilution assay for 21 days. With the addition of ½ minimum inhibitory concentration (MIC) carvacrol, eugenol and O. vulgare EO, the mycelial dry weight of both moulds decreased significantly over the whole incubation period of 7, 14 and 21 days. Trans-cinnamaldehyde slightly stimulated the growth of A. westerdijkiae and P. verrucosum at 14 and 21 days of incubation. Growth inhibition did not accompany inhibition of OTA production. Although the growth of both moulds was inhibited after the addition of ½ MIC carvacrol, eugenol and O. vulgare EO, the OTA production of the strong mycotoxin producer A. westerdijkiae was stimulated. Only trans-cinnamaldehyde inhibited the production of OTA with the addition of ½ MIC. P. verrucosum produced significantly less OTA than A. westerdijkiae, and its mycotoxin production was almost completely inhibited by the addition of ½ MIC of the natural preservatives.  相似文献   

19.
Trials were carried out to produce Ras cheese of good quality without the use of starter. Cheese was made from pasteurized cow's milk acidified with lactic acid or citric acid to pH 5.8 alone or coupled with mixing the curd with glucono δ lactone (4.5 g/kg curd). Control cheese was made from milk ripened with a starter culture of S. lactis. Resultant cheeses showed poor body and texture, weak flavour intensity and low levels of soluble nitrogen compounds and free volatile fatty acids. Incorporation into the cheese curd of mixtures containing Fromase 100 (fungal protease) and Piccantase B (fungal lipase) or Fromase 100 and Capalase K (animal lipase) enhanced flavour intensity, improved body characteristics and accelerated the formation of both soluble nitrogen compounds and free volatile fatty acids. The organoleptic properties of the experimental cheeses with added enzymes were comparable to those of the control cheese.  相似文献   

20.
This study focused on the potential functional activity of phenolic‐enriched pineapple wastes bioprocessed by Rhizopus oligosporus. Using the phenolic‐enriched bioprocessed extracts, amylase inhibition relevant to Type 2 diabetes and Helicobacter pylori inhibition linked to stomach ulcer were investigated. Two treatments were studied: 9 g of pineapple residue plus 1 g of soy flour (P9) and 5 g of pineapple residue plus 5 g of soy flour (P5). Extracts obtained after 2 and 10 days of growth were selected to represent early and late stages of bioprocessing based on phenolic content. Potent α‐amylase inhibition was found in P9 treatment at 2 days of fungal growth and was maintained after subsequent boiling, freeze‐drying and/or autoclave treatment. Amylase inhibitory activity did not correlate with the DPPH radical scavenging antioxidant activity of the extracts and therefore it is likely linked to the structure of the phenolic compounds. H. pylori inhibitory activity was found in P5 treatment after 10 days of R. oligosporus growth and may be linked to phenolic compounds present at this stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号