首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ni–P matrix, ternary Ni–W–P and Ni–P–ZrO2 coatings, and quaternary Ni–W–P–ZrO2 coatings were deposited using electroless method from a glycine bath. Their corrosion resistance was evaluated by electrochemical impedance spectroscopy (EIS) for various immersion times in a 3.5% NaCl solution. From among the investigated coatings, the ternary Ni–W–P coatings show the highest resistance to corrosion in the first hour of exposure to the 3.5% NaCl medium. An addition of ZrO2 adversely affects the performance of both the Ni–P coatings and the Ni–W–P coatings. For all the coatings, including the ones containing tungsten, a marked decrease in pore resistance (Rpor) over time is observed. This means that their corrosion resistance and capacity to protect the substrate decline. On the other hand, after 24 h immersion in the 3.5% NaCl solution the Ni–W–P coating shows the highest low‐frequency impedance modulus (|Z|f = 0.01 Hz). As regards corrosion resistance, the Ni–P coatings and the Ni–W–P coatings perform best.  相似文献   

2.
Electrochemical corrosion behavior of electroless Ni–P coating in NaCl and H2SO4 solutions were studied by potentiodynamic polarization curves and electrochemical impedance spectra techniques, as well as the corrosion morphology was characterized. The results indicate that electroless Ni–P coating with about 25 µm is stable in 30 days immersion in NaCl solution. Although it was corroded with prolonged immersion days, the corrosive medium has not penetrated through the coating. During the H2SO4 concentration ranging from 5 to 10%, the corrosion current density of electroless Ni–P coating increased due to the intensified anodic dissolution process; in 15% H2SO4 solution, electroless Ni–P coating shows obvious anodic passivation effect.  相似文献   

3.
The nano-composite coating of Ni–P/Au was obtained by adding gold nanoparticles to the Ni–P electroless plating solutions. The scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffractometer (XRD) and microsclerometer were used to characterize the compositions, structures, morphologies and hardness of the coatings, respectively. The Ni–P electroless coating contains 11.0 wt.% P while the composite coating of Ni–P/Au contains 9.85 wt.% P and 2.38 wt.% Au. The composite coatings, which contain gold nanoparticles, exhibit better properties of hardness, corrosion resistance and uniformity than the particle-free coatings. The coatings deposited from an electroless bath have the increased hardness after heat treatment due to the transformation of amorphous phase Ni–P to crystalline phase Ni3P. The composite coating with gold nanoparticles has bigger hardness value than Ni–P coating.  相似文献   

4.
AZ91D镁合金化学复合镀Ni-P-ZrO2的工艺与性能   总被引:9,自引:2,他引:9  
对镁合金传统化学镀工艺进行了改进,避免了使用氢氟酸和六价铬等有毒物质。采用化学镀与化学复合镀相结合方法,在AZ91D镁合金上获得了Ni-P-ZrO2纳米化学复合镀层,并研究了新工艺化学镀前处理和镍沉积机理及复合镀层的结构和性能。结果表明:新工艺方法获得的Ni-P镀层更均匀、致密,耐蚀性优于传统工艺化学镀层;Ni-P-ZrO2复合镀层与AZ91D合金基体在3.5%NaCl溶液中的动电位极化曲线对比表明,该复合镀层对镁合金可以起到明显的保护作用;从磨损实验结果可见,Ni-P镀层的磨损质量损失率几乎为Ni-P-ZrO2镀层的3倍,说明ZrO2纳米粉的加入能改善镀层的耐磨性。  相似文献   

5.
D. Liu  L. Zhou  J. Yu  Y. Yan  K. Lee 《工业材料与腐蚀》2011,62(10):926-931
Electroless Ni–PTFE–P coatings have been successfully deposited on the surface of mild steel shaft from plating baths containing various concentrations of rare earth metal cerium (RE Ce). Surface morphology, Ce fraction, and thickness of the coatings were characterized by scanning electron microscope, inductively coupled plasma optical emission spectrometry, and reflection optical microscope, respectively. Salt spray test was used to determine the corrosion resistance of the coating. Results revealed that structure, compactness, and deposition rate of the Ni–PTFE–P coatings were increased significantly by addition of a small amount of RE Ce (10–20 ppm) to the plating bath. Electroless Ni–PTFE–P coating deposited from plating baths with 20 ppm Ce shows the highest corrosion resistance, owing to its high compactness and thickness. Deposition rate and corrosion resistance of the Ni–PTFE–P coating were deteriorated greatly as concentration of RE Ce in the plating baths exceeds 100 ppm.  相似文献   

6.
碳纳米管/镍基复合镀层的腐蚀行为   总被引:21,自引:3,他引:21  
采用复合沉积方法在普通碳钢基底上沉积碳纳米管/镍基复合镀层。用腐蚀实验、电化学方法研究了复合镀层在3.5%NaCl溶液中的耐腐蚀性能,并讨论了其耐腐蚀机理,对普通碳钢和纯镍镀层也进行了比较研究。结果表明:碳纳米管的加入显著提高了复合镀层的耐腐蚀性能;耐腐蚀的原因在于碳纳米管的复合镀层更加致密,隔离了腐蚀介质,并阻止了蚀坑的增大,同时,碳纳米管促进了镍的纯化,从而提高镀层的耐蚀性。  相似文献   

7.
8.
The effect of cerium ion on the formation, morphology, composition, and corrosion behavior of Ni–cerium oxide coatings was investigated by SEM, FESEM, XRD, EDS, XPS, EIS, and potentiodynamic polarization. The extremely highest corrosion resistant coating was obtained when the cerium ion concentration in the plating bath was 16 mM. It has been observed that the presence of cerium ion in the plating bath led to changes in the morphology of the coating from pyramid nodular structure to coaxial structure. By adding cerium ion to the plating bath, a considerable grain refinement in the nanometer region was observed.  相似文献   

9.
采用化学复合镀方法制备镍-磷-钛酸钾晶须复合镀层,用扫描电镜和金相显微镜观察复合镀层的表面形貌和断面结构,用XRD研究时效温度对镀层组织结构的影响,并解释时效温度对镀层显微硬度的影响机制。采用交流阻抗技术和中性盐雾实验研究镀层的耐腐蚀性能。在销-盘式摩擦磨损试验机上进行复合镀层的摩擦磨损性能测试。结果表明:镀层的显微硬度随温度的变化曲线呈单峰形态,在400℃时达到最大值;复合镀层具有良好的耐腐蚀性能和摩擦磨损性能,在同等实验条件下,复合镀层的磨损率只有Ni-P镀层的1/4。  相似文献   

10.
11.
Ni/P金刚石化学复合镀层性能与组织研究   总被引:1,自引:0,他引:1  
本文研究了金刚石含量、热处理温度、表面活性剂种类等因素对Ni-P-金刚石复合镀层的显微硬度与耐磨性能的影响;采用扫描电子显微镜、X射线衍射仪对复合镀层的表面形貌及组织结构进行了分析。结果表明:在化学镀层中共沉积金刚石微粉能显著提高镀层的耐磨性;各工艺因素对复合镀层显微硬度与耐磨性的影响程度各不相同,热处理温度对复合镀层耐磨性能的影响最大;当镀液中金刚石微粉含量为2 g/L、热处理温度400℃、表面活性剂为SHP其含量为1∶15时,复合镀层的耐磨性能最好。与Ni-P化学镀层相比,金刚石复合镀层的耐磨性提高50%。  相似文献   

12.
采用中温化学复合镀在高碳钢表面制备了Ni-Cu-P-TiN复合镀层,采用SEM、XRD对镀层的相组成与微观结构进行了分析,并研究了400℃热处理时间对镀层相组成、硬度、耐腐蚀性能的影响。结果表明,TiN相均匀的分散于Ni-Cu-P胞状结构的界面之间,沉积比例在4.5%~5.0%;在400℃下进行恒温热处理,随时间延长,Ni-Cu-P-TiN镀层中逐渐析出细小Ni3P相,截面硬度增加,40min时达到最高硬度960HV;随热处理时间继续延长,Ni3P相的晶粒粗化,镀层硬度下降;镀态Ni-Cu-P-TiN镀层的自腐蚀电流密度为7.92μA,仅为高碳钢(167μA)的1/20,经400℃下恒温热处理0~40min,其自腐蚀电流密度逐渐升高,40min时达到最大值28.2μA。  相似文献   

13.
在镍磷化学镀的基础上,研究了微米、纳米金刚石化学复合镀工艺。采用正交试验方法,研究化学镀液、金刚石种类与浓度、表面活性剂种类与含量以及热处理温度等因素对镀层显微硬度的影响。结果表明:对镀层硬度影响明显的因素依次为金刚石种类、表面活性剂种类、热处理温度和表面活性剂含量,而镀液种类和金刚石浓度对镀层硬度的影响较小。最佳工艺为:金刚石为纳米金刚石灰粉,添加阴离子表面活性剂,热处理温度为350℃,表面活性剂含量为1∶10,选用化学镀液B,金刚石浓度为6.0g/L。  相似文献   

14.
A novel Ni-P-SiC composite coating was prepared by electroless plating in order to improve the corrosion capacity and wear resistance of AZ91D magnesium alloy. The influence of pH values on deposition rates and properties of the coatings was studied. The microstructure and phase structure of the Ni-P-SiC coatings were analyzed by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The corrosion and wear resistance performances of the coatings were also investigated through electrochemical technique and pin-on-disk tribometer, respectively. The results indicate that the composite coating is composed of Ni, P and SiC. It exhibits an amorphous structure and good adhesion to the substrate. The coatings have higher open circuit potential than that of the substrate. The composite coating obtained at pH value of 5.2 possesses optimal integrated properties, which shows similar corrosion resistance and ascendant wear resistance properties to the substrate.  相似文献   

15.
Ni-P matrix composite coating reinforced by carbon nanotubes (CNTs) was deposited by electroless plating. The most important factors that influence the content of carbon nanotubes in deposits, such as agitation, surfactant and carbon nanotubes concentration in the plating bath were investigated. The surface morphology, structure and properties of the Ni-P-CNTs coating were examined. It is found that the maximum content of carbon nanotubes in the deposits is independent of carbon nanotubes concentration in the plating bath when it is up to 5 mg/L. The test results show that the carbon nanotubes co-deposited do not change the structure of the Ni-P matrix of the composite coating, but greatly increase the hardness and wear resistance and decrease the friction coefficient of the Ni-PCNTs composite coating with increasing content of carbon nanotubes in deposits.  相似文献   

16.
17.
18.
19.
Influence of dual‐retrogression and reaging (dual‐RRA) temper on the exfoliation corrosion (EC) and electrochemical behavior of Al–Zn–Mg–Cu alloy has been investigated by means of transmission electron microscope, energy dispersive X‐ray spectroscopy, tensile test, polarization curve, and EIS. Dual‐RRA temper not only kept the strength similar to retrogression and reaging temper, but also improved EC resistance compared to T76 temper, being attributed to coarser and sparser grain boundary precipitates as well as higher Cu and lower Zn content. Obtained polarization curves and EIS are in good agreement with EC rating sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号