首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to evaluate effectiveness and effects of bleaching with 35% hydrogen peroxide with and without calcium on color, micromorphology, and the replacement of calcium and phosphate on the enamel surface. Thirty bovine enamel blocks (5.0 × 5.0 mm) were placed into the following groups: G1: artificial saliva (control); G2: 35% hydrogen peroxide gel without calcium (Whiteness HP Maxx–FGM); and G3: 35% hydrogen peroxide gel with calcium (Whiteness HP Blue–FGM). Three color measurements were performed with a spectrophotometer: untreated (baseline), after performing staining, and after application of bleaching agents. Calcium deposition on the enamel was evaluated before and after the application of bleaching agents using energy‐dispersive X‐ray spectrometry. The enamel surface micromorphology was observed under scanning electron microscopy. The pH of each product was measured. The data were subjected to one‐factor analysis of variance (ANOVA), and any differences were analyzed using Tukey's test (P < 0.05). G3 showed greater variation in total color after the experiment than G2 and G1; there was no significant difference in calcium or phosphorus concentration before and after the experimental procedures; morphological changes were observed only in G2 and G3; and the pH values of the Whiteness HP Maxx and Whiteness HP Blue bleaching agents were 5.77 and 7.79, respectively. The 35% hydrogen peroxide with calcium showed greater bleaching potential, but the addition of calcium had no effect in terms of reducing morphological changes or increasing the calcium concentration on the enamel surface. Microsc. Res. Tech. 78:975–981, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
OBJECTIVES: The aim of this in vitro study was to investigate the efficacy of in‐office bleaching technique combined with the application of a casein phosphopeptide‐amorphous calcium phosphate (CPP‐ACP) paste (MI Paste–MI) at different moments and its influence on enamel surface properties. METHODS: Eighty bovine dental crowns were randomly allocated into eight groups (n = 10), and bleached with either 35% hydrogen peroxide (HP) or 37% carbamide peroxide (CP). Four different protocols of application of MI were considered: without MI, MI applied before bleaching, MI applied after bleaching, and MI applied both before and after bleaching. Bleaching effectiveness was measured by the VITA EasyShade spectrophotometer utilizing the CIEL*a*b* system (ΔE, ΔL*, Δa*, and Δb*). Color readings were measured at baseline, 7, 14, and 21 days. Hardness and roughness were measured at baseline (T0) and immediately after bleaching (T14). Data were subjected to the two‐way ANOVA for repeated measurements and Tukey's test at 5%. RESULTS: HP groups achieved the greatest color change. The application of a CPP‐ACP paste did not reduce the efficacy of bleaching peroxides. Samples bleached with CP showed decreased hardness at T14. Samples bleached with HP that received the application of MI before and before/after bleaching did not present hardness decrease at T14. Samples bleached with peroxides only and received MI after bleaching showed increased roughness at T14. CONCLUSIONS: The use of CPP‐ACP was able to prevent negative changes in roughness and hardness of bovine enamel when associated to hydrogen peroxide, and might be applied before/after the bleaching protocol. Microsc. Res. Tech. 75:1019–1025, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
4.
The aim of this in vitro study was to evaluate qualitatively the surface morphology of enamel bleached with 35% hydrogen peroxide (HP) followed by application of fluoridated agents. Forty intact pre molars were randomly distributed into four groups (n = 10), treated as follows: Group I (control group) remained stored in artificial saliva at 37 °C, Group II - 35% HP; Group III - 35% HP + acidulated fluoride (1.23%) and Group IV - 35% HP + neutral fluoride (2%). The experimental groups received three applications of bleaching gel and after the last application all specimens were polished. This procedure was repeated after 7 and 14 days, and during the intervals of applications, the specimens were stored in artificial saliva at 37°C. Scanning electron microscopy (SEM) analysis showed superficial irregularities and porosities to varying degrees in bleached enamel compared to control group. Sample evaluation was made by attributing scores, and data were statistically analyzed using Kruskal-Wallis and Dunn tests (P < 0.05). SEM qualitative investigation demonstrated that 35% hydrogen peroxide affected human dental enamel morphology, producing porosities, depressions, and superficial irregularities at various degrees. These morphological changes were higher after the application of 1.23% acidulated fluoride gel.  相似文献   

5.
This study evaluated the effects on human enamel after two bleaching procedures: with a fluoridated bleaching agent and with topical fluoride application postbleaching. It used 43 enamel blocks (3 mm(2) ) that were ground flat (600-2,000 grit) and polished with polishing paste (one and one-fourth). Specimens were randomly divided into three groups according to the bleaching procedure: (1) control group, (2) hydrogen peroxide 35% (HPF) and topical application of fluoride 1.23%, and (3) HP 38% (OP) with fluoride in its composition. Bleaching agents were used according to the manufacturer's instructions. Three methodologies were used: nanoindentation, to observe surface hardness and elastic modulus; atomic force microscopy, to observe surface roughness (R(a) - R(z)); and scanning electron microscopy, to observe the enamel surface effects. Group OP had a decrease in the elastic modulus after bleaching, which was recovered at 14 days. An increased roughness (R(a); 32%) was observed on group HPF and had an increased erosion on enamel surface (67%). It was concluded that topical application of fluoride, after using the nonfluoridated whitening agent, increased the roughness values and erosion of enamel.  相似文献   

6.
This study aimed to evaluate the influence of sterilization methods on conventional and bulk-fill resin composites' (BFRCs) surface properties in an attempt to preview bias in laboratory bacterial adhesion tests. Two regular viscosity conventional resin composites [Filtek Z350 XT™ (Z350) and IPS Empress Direct™ (ED)] and two regular viscosity BFRCs [Filtek Bulk Fill™ (FILT) and Tetric N-Ceram Bulk Fill IVA™ (TBF)] were used. The materials were characterized by Scanning Electron Microscopy (SEM), surface roughness (SR), and wettability (W) after sterilization with hydrogen peroxide gas plasma (HPGP) and steam sterilization (SS). Nonsterilized samples served as a control group (n = 5). Statistical analysis was performed using two-way analysis of variance (ANOVA) and Tukey post hoc test (p < 0.05). For SR, there were no statistically significant differences among the groups (p > .05). SS method decreased the contact angle for FILT and Z350 (p < .01). The SS promoted more exposition of filler particles, while the HPGP method did not alter the tested materials' morphology. Therefore, sterilization methods affected the resin composites tested selectively. HPGP seems to be the most recommended method to sterilize the tested resin composites before laboratory bacterial adhesion tests.  相似文献   

7.
This study evaluated dentin bond strength (BS) and nanoleakage of non‐ and pre‐etched dentin immediately (T0,), 7 days (T7), and 14 days (T14) after bleaching. Bovine incisors (150) were selected and half of them submitted to intrapulpal dentin etching (e). Non‐ and pre‐etched dentin were subjected to the following (n = 15): no bleaching/control (C); 35% carbamide peroxide (CP); 35% hydrogen peroxide (35% HP); 25% hydrogen peroxide (25% HP); and sodium perborate (SP). Bleaching agents were applied to the pulp chamber four times within a 72‐h interval. Afterwards, pulp chamber dentin was prepared for the BS test at different evaluation times (n = 5): T0, T7, and T14. Composite blocks were built on pulp chamber and sectioned in slices. Slices were reduced to an hour‐glass shape with a cross‐sectional area of 0.8 mm2 and submitted to microtensile BS test. Two additional specimens for each group were prepared for nanoleakage evaluation by transmission electron microscopy (TEM). Results were analyzed by ANOVA (two‐way) and Dunnett's test (p < .05). BS decreased immediately after intracoronal bleaching for both sound and pre‐etched dentin (p < .05). At T14, the BS of non‐etched bleached dentin increased for all groups, whereas the pre‐etched SPe group presented BS similar to the Ce. Nanoleakage within the hybrid layer was perceptible immediately after bleaching, although a decrease in nanoleakage was observed for all groups at T14. Adhesive restorations should be performed 7–14 days after bleaching, according to the bleaching agent used. Intracoronal bleaching should be performed preferably with sodium perborate if previous dentin etching is applied.  相似文献   

8.
Background: It remains unclear as to whether or not dental bleaching affects the bond strength of dentin/resin restoration. Purpose: To evaluated the bond strength of adhesive systems to dentin submitted to bleaching with 38% hydrogen peroxide (HP) activated by LED‐laser and to assess the adhesive/dentin interfaces by means of SEM. Study design: Sixty fragments of dentin (25 mm2) were included and divided into two groups: bleached and unbleached. HP was applied for 20 s and photoactivated for 45 s. Groups were subdivided according to the adhesive systems (n = 10): (1) two‐steps conventional system (Adper Single Bond), (2) two‐steps self‐etching system (Clearfil standard error (SE) Bond), and (3) one‐step self‐etching system (Prompt L‐Pop). The specimens received the Z250 resin and, after 24 h, were submitted to the bond strength test. Additional 30 dentin fragments (n = 5) received the same surface treatments and were prepared for SEM. Data were analyzed by ANOVA and Tukey's test (α = 0.05). Results: There was significant strength reduction in bleached group when compared to unbleached group (P < 0.05). Higher bond strength was observed for Prompt. Single Bond and Clearfil presented the smallest values when used in bleached dentin. SEM analysis of the unbleached specimens revealed long tags and uniform hybrid layer for all adhesives. In bleached dentin, Single Bond provided open tubules and with few tags, Clearfil determined the absence of tags and hybrid layer, and Prompt promoted a regular hybrid layer with some tags. Conclusions: Prompt promoted higher shear bond strength, regardless of the bleaching treatment and allowed the formation of a regular and fine hybrid layer with less deep tags, when compared to Single Bond and Clearfil. Microsc. Res. Tech., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
The aim of this study was to analyse the influence of the artificial saliva on a three‐dimensional (3‐D) surface texture of contemporary dental composites. The representatives of four composites types were tested: nanofilled (Filtek Ultimate Body, FUB), nanohybrid (Filtek Z550, FZ550), microfilled (Gradia Direct, GD) and microhybrid (Filtek Z250, FZ250). The specimens were polymerised and polished by the multistep protocol (SuperSnap, Shofu). Their surface was examined, before and after 3 weeks’ exposure to artificial saliva storage. The surface texture was analysed using the atomic force microscope (AFM). The obtained images were processed to calculate the areal autocorrelation function (AACF), anisotropy ratio Str (texture aspect ratio), and structure function (SF). The log–log plots of SF were used to calculate fractal properties, such as fractal dimension D, and pseudo‐topothesy K. The analysis showed changes in surface anisotropy ratio Str values, which became higher, whereas the Sq roughness (root‐mean‐square) reduced after the artificial saliva storage. All the samples exhibited bifractal structure before the saliva treatment, but only half of them remained bifractal afterwards (GD, FZ250), whereas the other half turned into a monofractal (FUB, FZ550). The cube‐count fractal dimension Dcc was found to be material‐ and treatment‐insensitive.  相似文献   

10.
The purpose was to investigate the surface characteristics of various resin-based materials by immersing in probiotic beverages. A total of 420 disc-shaped samples (5 mm × 2 mm) were prepared from resin-based composites. Samples were divided into four groups and immersed for 10 min/day for 1 month in either a probiotic sachet, kefir, kombucha, or artificial saliva (control). Surface roughness was measured at baseline and 1 month. One sample of each of the tested materials was examined under nanoindentation to evaluate the reduced elasticity modulus and nanohardness scores. Scanning electron microscopy (SEM) was used to compare surface differences. Data were analyzed statistically using one-way ANOVA test and the significance was set at p < .05. The lowest roughness scores were observed in Z250, Estelite Bulk Fill, and HRi ENA in most of the test groups. Among conventional composites, Z250 group had the highest nanohardness and elasticity modulus scores. Among bulk-fill composites, Estelite Bulk Fill Flow had the lowest surface roughness after immersion in probiotic beverages and the highest nanohardness values. Reveal HD, as a bulk-fill group showed higher surface roughness and considerably lower nanohardness and elasticity modulus scores. Maximum height levels of samples were recorded. SEM images revealed voids and microcracks on the surfaces of test materials. Dentists may prefer Z250 as microhybrid and Estelite Bulk Fill Flow as bulk-fill composites for the restorations of patients who consume gut-friendly drinks regularly. When there are various types of materials, nanoindentation is a useful method for evaluating surface alterations and sensible comparisons.  相似文献   

11.
The aim of this study is to evaluate the effect of whitening toothpaste on the surface roughness of resin-based restorative materials by different measurement methods. Twenty four specimens from each of human enamel, a microhybrid composite and two nanohybrid composites discs (8.0 diameter × 4.0 mm thick) were divided into two groups (n = 12) according to toothbrushing solutıon and subjected to simulation toothbrushing (30,000 cycles) with both distilled water and whitening toothpaste containing blue covarine. Surface roughness was examined using atomic force microscopy (AFM), profilometer, and scanning electron microscopy (SEM), and the data obtained were subjected to analysis. Ra values of Tescera (TES) were significantly higher than Sonicfill 2 (SF2) when brushing both toothbrushing solutions for initial or 30,000 cycles. Roughness increased for SF2 and TES when brushed for 30,000 cycles and was higher than enamel and Herculite XRV Ultra (HXU). Human enamel was obtained lower surface roughness values brushed with toothpaste compared with distilled water. Evaluation of the surface roughness of control groups using the AFM revealed no statistically significant difference between the groups, but significant differences were found using a profilometer. The use of abrasive whitening toothpaste containing blue covarine and the number of brushing cycles affect the surface properties of human enamel and the restorative material, and also, the clinical success of the restoration. Toothbrushing for 30,000 cycles increased the surface roughness of all materials. The type of toothbrushing solution partially has affected surface roughness.  相似文献   

12.
This study evaluated the effects of four over-the-counter (OTC) bleaching products on the properties of enamel. Extracted human molars were randomly assigned into four groups (n = 5): PD: Poladay (SDI), WG: White Teeth Global (White Teeth Global), CW: Crest3DWhite (Procter & Gamble), and HS: HiSmile (HiSmile). The hydrogen peroxide (H2O2) content in each product was analyzed via titration. Twenty teeth were sectioned into quarters, embedded in epoxy resin, and polished. Each quarter-tooth surface was treated with one of the four beaching times: T0: control/no-bleaching, T14: 14 days, T28: 28 days, and T56: 56 days. Materials were applied to enamel surfaces as recommended. Enamel surfaces were examined for ultramicrohardness (UMH), elastic modulus (EM), superficial roughness (Sa), and scanning electron microscopy (SEM). Ten additional teeth were used to evaluate color and degree of demineralization (DD) (n = 5). Data were statistically tested by two-way ANOVA and Tukey's tests (α = 5%). Enamel surfaces treated with PD and WG presented UMH values significantly lower than the controls (p < .05). Elastic modulus (E) was significantly reduced at T14 and T28 for PD, and at T14 for HS (p < .05). A significant increase in Sa was observed for CW at T14 (p < .05). Color changes were observed in the PD and WG groups. Additionally, DD analysis showed significant demineralization at T56 for CW. Overall, more evident morphological alterations were observed for bleaching products with higher concentrations of H2O2 (p < .05), PD, and WG. Over-the-counter bleaching products containing H2O2 can significantly alter enamel properties, especially when application time is extended.  相似文献   

13.
The purpose of this study was to compare the inorganic content and morphology of one nanofilled and one nanohybrid composite with one universal microhybrid composite. The Vickers hardness, degree of conversion and scanning electron microscope of the materials light‐cured using LED unit were also investigated. One nanofilled (Filtek? Supreme XT), one nanohybrid (TPH®3) and one universal microhybrid (Filtek? Z‐250) composite resins at color A2 were used in this study. The samples were made in a metallic mould (4 mm in diameter and 2 mm in thickness). Their filler weight content was measured by thermogravimetric analysis (TG). The morphology of the filler particles was determined using scanning electron microscope equipped with a field emission gun (SEM‐FEG). Vickers hardness and degree of conversion using FT‐IR spectroscopy were measured. Filtek? Z‐250 (microhybrid) composite resin shows higher degree of conversion and hardness than those of Filtek? Supreme XT (nanofilled) and TPH®3 (nanohybrid) composites, respectively. The TPH3® (nanohybrid) composite exhibits by far the lowest mechanical property. Nanofilled composite resins show mechanical properties at least as good as those of universal hybrids and could thus be used for the same clinical indications as well as for anterior restorations due to their high aesthetic properties. Microsc. Res. Tech. 75:758–765, 2012. © 2011 Wiley Periodicals, Inc  相似文献   

14.
The purpose of this study was to compare the effects of professional tooth whitening agents containing highly concentrated hydrogen peroxide (with and without laser activation), on the enamel surface; and the potential of four different toothpastes to remineralize any alterations. The study was performed on 50 human molars, divided in two groups: treated with Opalescence® Boost and Mirawhite® Laser Bleaching. Furthermore, each group was divided into five subgroups, a control one and 4 subgroups remineralized with: Mirasensitive® hap+, Mirawhite® Gelle?, GC Tooth Mousse? and Mirafluor® C. The samples were analysed by SEM/3D‐SEM‐micrographs, SEM/EDX‐qualitative analysis and SEM/EDX‐semiquantitative analysis. The microphotographs show that both types of bleaching cause alterations: emphasized perikymata, erosions, loss of interprizmatic substance; the laser treatment is more aggressive and loss of integrity of the enamel is determined by shearing off the enamel rods. In all samples undergoing remineralization deposits were observed, those of toothpastes based on calcium phosphate technologies seem to merge with each other and cover almost the entire surface of the enamel. Loss of integrity and minerals were detected only in the line‐scans of the sample remineralized with GC Tooth Mousse?. The semiquantitative EDX analysis of individual elements in the surface layer of the enamel indicates that during tooth‐bleaching with HP statistically significant loss of Na and Mg occurs, whereas the bleaching in combination with a laser leads to statistically significant loss of Ca and P. The results undoubtedly confirm that teeth whitening procedures lead to enamel alterations. In this context, it must be noted that laser bleaching is more aggressive for dental substances. However, these changes are reversible and can be repaired by application of remineralization toothpastes.  相似文献   

15.
为提高碳纤维与环氧树脂的界面结合性能,从而提高复合材料的摩擦学性能,用聚多巴胺和聚乙烯亚胺对碳纤维进行表面修饰,利用光谱分析仪和扫描电子显微镜分析修饰前后碳纤维表面的化学组成和微观结构,利用万能材料试验机和摩擦磨损试验机考察碳纤维增强环氧树脂复合材料的力学性能和摩擦学性能。结果表明:碳纤维经表面处理之后的粗糙程度和活性官能团增多,改善了纤维与树脂之间的界面结合,使得复合材料的弯曲强度和拉伸强度得到不同程度的提高;与未修饰碳纤维增强的环氧树脂复合材料相比,表面修饰碳纤维增强环氧树脂复合材料的耐磨性能得到了很大程度的提高,复合材料的磨损机制也由疲劳磨损转变为磨粒磨损。  相似文献   

16.
Pure and plasma-treated Kevlar fabrics were used to prepare Kevlar fabric/phenolic composites by consecutive dipping of the fabric in phenolic adhesive resin. The friction and wear performance of the resulting composites has been evaluated in a pin-on-disk wear tester at various dry-sliding conditions. The surface changes occurring on Kevlar fibers treated with air-plasma were analyzed by using X-ray photoelectron spectroscope (XPS), Fourier transform infrared spectroscope (FT-IR) and scanning electron microscope (SEM). Moreover, the impact of air-plasma treatment time and power on the friction and wear behavior of Kevlar fabric/phenolic composites composed of the air-plasma-treated Kevlar fabrics was systematically studied. It was found that plasma treatment can significantly improve the tribological performance of the prepared Kevlar fabric/phenolic composites; the best performance was after a plasma treatment at 50 W for 15 min. The plasma treatment generates oxygenic and nitrogenous groups on the surface of the fabric, coupled with an increase of the surface roughness, strengthening the bond between the Kevlar fabric and phenolic adhesive resin and hence improving the tribological properties of the Kevlar fabric/phenolic composites.  相似文献   

17.
The objective of this study was to examine the effects of extrinsic or intrinsic acids on nanofilled and bulk fill resin materials in vitro. A total of 90 disks were prepared using dental restorative material (Filtek Z350XT, GrandioSO, Filtek Bulk Fill, X‐tra fil). Thirty disks of each material were sub‐divided into three groups (n = 10) that were immersed for 7 days in deionized water (DW), 5% citric acid (CA—pH 2.1), or 0.1% hydrochloric acid (HCl—pH = 1.2). Surface hardness and roughness (stylus profilometer by Ra parameter) analysis were performed before and after immersion. Morphological changes were evaluated by scanning electron microscopy. The data were analyzed by two‐way ANOVA and Tukey's test (α = 0.05). All tested materials did not show significant differences in the effects of the DW, CA, or HCl solutions on surface roughness (p = .368). Likewise, the hardness loss was not affected by the solutions tested (p = .646), but there was a difference in the resin type (p = .002). Filtek Bulk Fill resin hardness was less affected, while Filtek Z350XT and GrandioSO presented the most hardness loss after 7 days of solution immersion. In terms of this experimental study, the results demonstrate the effectiveness of the mechanical properties (roughness and hardness surface) of nanofilled and bulk fill resin materials to resist erosion from extrinsic and intrinsic acids, therefore being potential candidates for dental applications.  相似文献   

18.
The aim of this study was to determine the erosive potential of hydrogen peroxide (HP) containing mouthwash on dentin assessed by Focus variation three‐dimensional (3D) microscopy. Twenty dentin slabs were selected and randomly allocated into two groups (n = 10): DW—Distilled water (pH = 7.27) and HP—1.5% (pH = 3.78). Each specimen was cyclically demineralized (4 × 60 s/day, 10 days) with HP or DW and brushed 3×/day (200 g, 150 strokes—toothpaste with 1,450 ppmF as NaF). Between the challenges, the specimens were exposed to artificial saliva. Afterward, dentin loss was analyzed using focus variation 3D microscopy, and the data were submitted to unpaired t‐test (α = 0.05). Statistically significant difference was found between the mean wear rate (μm, ±SD) of HP (1.98 ± 0.51) and DW (1.45 ± 0.39). The results suggest that the use of HP‐containing mouthwash associated to brushing may increase the risk of tissue loss and focus variation 3D microscopy may be used as a technique for quantifying dental wear. Microsc. Res. Tech. 76:904–908, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
A possible problem with peroxide based tooth whitening is the loss of tooth hardness and higher susceptibility to enamel surface wear. This study focussed on the effects of acidic and neutral hydrogen peroxide solutions (6 and 30% w/v) on hardness, friction and wear of bovine enamel. The experiments showed that treatments with neutral peroxide reduced wear and the loss of enamel hardness up to 2–3 times. In addition, further investigation on remineralisation with amorphous calcium phosphate showed an increase in hardness after treatment. Friction coefficients of teeth against steel varied between 0.25 and 0.7, and wear coefficients ranged between ≈10−6 and 10−7 mm3/N m. From this study, it is possible to explain the wear behaviour of HP treated enamel with changes in hardness.  相似文献   

20.
A novel nonenzymatic sensor based on gold nanoparticle–nitrogen-doped graphene was synthesized by electrochemical sequential deposition on the surface of a glassy carbon electrode. Nitrogen-doped graphene was synthesized by a hydrothermal method using graphene oxide and carbamide as the raw materials mixed in specific proportions. The gold nanoparticles were used in the electrochemical sensor to provide unique electronic and electrochemical properties. Under the optimized conditions, hydrogen peroxide was determined by differential pulse voltammetry with a linear relationship for concentrations from 1.0?×?10?7 to 1.0?×?10?5?mol?L?1. The detection limit was 4.9?×?10?8?mol?·?L?1 (according to the 3σ rule) and the recoveries were 95.0–98.0%. This sensor is simple, reproducible, and demonstrates that nitrogen-doped graphene oxide has potential applications for electrochemical sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号