首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
介绍了我国以非粮作物木薯和甜高粱为原料生产燃料乙醇的生产技术及产业发展现状,分析了当前产业发展存在的问题,指出加强在原料种收储方面的研究以及种植基地建设,实现原料的大规模廉价稳定供应,同时做好全产业链优化设计,提高项目整体经济性,这将有助于我国1.5代生物燃料乙醇产业发展,满足生物燃料的市场需求和国家既定目标。  相似文献   

2.
Ethanol is a more reduced substrate than sugars. Here, 13C-metabolic flux analysis (MFA) revealed that ethanol catabolism could supply sufficient acetyl-CoA and reducing equivalent for PPD biosynthesis. Then, we described modular engineering strategy to optimize a multigene pathway for protopanaxadiol (PPD) production from ethanol in Saccharomyces cerevisiae. PPD biosynthesis was divided into four modules: mevalonate (MVA) pathway module, triterpene biosynthesis module, sterol biosynthesis module, and acetyl-CoA formation module. Combinatorially overexpressing every gene in MVA pathway and optimizing metabolic balance in triterpene biosynthesis module led to significantly enhanced PPD production (42.34 mg/L/OD600). In sterol biosynthesis module, fine-tuning lanosterol synthase gene (ERG7) expression using TetR–TetO gene regulation system enabled further production improvement (51.26 mg/L/OD600). Furthermore, increasing cytoplasmic acetyl-CoA supply by overexpressing a Salmonella ACS (acetyl-CoA synthetase gene) mutant ACSseL641P improved PPD production to 66.55 mg/L/OD600. In 5 L bioreactor, PPD production of the best-performing strain WLT-MVA5 reached 8.09 g/L, which has been the highest titer of plant triterpene produced in yeast. © 2018 American Institute of Chemical Engineers AIChE J, 65: 866–874, 2019  相似文献   

3.
Saccharomyces cerevisiae (CCT 3174 and commercial baker's yeast) was immobilized by adsorption onto chrysotile. The adsorbed yeast cells were easily washed out, but cells grown in situ were strongly attached by entrapment by chrysotile microfibres. In fermentation experiments with 30% (w/v) glucose solution, the immobilized cells showed a 1·3-fold increase in initial reaction velocity. For immobilized CCT 3174, the final ethanol yield was 26% higher than that with free cells. © 1998 Society of Chemical Industry  相似文献   

4.
蒎烯可衍生为高能量密度燃料,但在酿酒酵母中的全生物合成却未见报道。酿酒酵母由于拥有强大的蛋白表达和翻译后修饰系统以及完整的内膜系统,相比于大肠杆菌等原核生物更适于P450等蛋白的表达,因此将酿酒酵母作为宿主细胞,对于蒎烯或者其他物质实现如“疯狂碳环”的高能量化是至关重要的。本研究在酿酒酵母底盘中表达内源焦磷酸香叶酯合成酶(ERG20)的突变体ERG20ww和火炬松来源的蒎烯合酶(PtPS)构建了蒎烯的合成路径。通过截短PtPS N端2~51位氨基酸残基(tPtPS),蒎烯产量较初始产量(0.329 mg·L-1)提高了2.23倍。在过表达异戊二烯焦磷酸异构酶(IDI1)和RNA聚合酶Ш负调控因子(MAF1)的基础上,表达ERG20ww和tPtPS的融合蛋白,蒎烯产量进一步提高了5.16倍。通过将内源基因ERG20启动子原位替换为弱启动子HXT1,下调ERG20的转录,蒎烯的产量提高了26.0%。最终通过调节发酵过程中的培养基pH使蒎烯产量达11.7 mg·L-1,较初始产量提高了34.5倍。本研究在酿酒酵母中实现蒎烯的从头合成,并获得已知蒎烯摇瓶水平的最高产量。  相似文献   

5.
唐瑞琪  熊亮  程诚  赵心清  白凤武 《化工进展》2018,37(8):3119-3128
寻找化石能源的替代品以及开发和利用生物能源已引起国内外研究者的广泛关注。提高酿酒酵母利用来源广泛、贮存丰富的农林废弃物等木质纤维素原料生产燃料乙醇的效率是生物能源的重要研究内容,但是,重组酿酒酵母木糖发酵性能低是限制纤维素乙醇经济性的关键问题。本文总结了酿酒酵母中木糖代谢途径的构建和优化以及木糖转运对木糖利用的影响,分析了重组酵母利用纤维素水解液进行乙醇发酵的研究现状,并对进一步提高重组酿酒酵母纤维素乙醇生产效率的研究趋势进行了展望。目前国内外已经构建了可有效利用木糖产乙醇的重组酵母,但对其木糖代谢机制的研究还尚未深入,限制了重组菌株的定向改造。此外,目前缺少在纤维素生物质水解液发酵实际应用过程中对重组菌株的评价。因此,加强重组酵母菌株对木糖利用相关代谢调控机理的分析,注重多种抑制物对菌株发酵性能的影响,结合真实底物纤维素乙醇发酵过程进行重组菌株的构建和优化,从而进一步提高纤维素乙醇生产的经济性,是未来菌株构建的重要研究方向。  相似文献   

6.
Bioethanol production from molasses has advantages in greenhouse gas emissions because of its energy acquisition from bagasse. However, the improvement of bioethanol productivity is challenging; while each elemental technology option can be greatly improved, the trade‐offs between the production of raw sugar and bioethanol are complex. This issue should be addressed through the optimization of the whole system, including both agricultural and industrial processes. In this study, we constructed a model of combined raw sugar and bioethanol production from sugarcane considering agricultural and industrial technology options. Data were acquired through a detailed investigation of actual sugar mills. Case studies on the redesign of combined raw sugar and bioethanol production demonstrated that the simultaneous implementation of both technology options increases production of food, materials, and energy from plant‐derived renewable resources, thus demonstrating the effectiveness of the interdisciplinary approach. © 2016 American Institute of Chemical Engineers AIChE J, 63: 560–581, 2017  相似文献   

7.
The optimization of the composition of the algae for the simultaneous production of bioethanol and biodiesel is presented. We consider two alternative technologies for the biodiesel synthesis from algae oil, enzymatic or homogeneous alkali catalyzed that are coupled with bioethanol production from algae starch. In order to determine the optimal operating conditions, we not only couple the technologies, but simultaneously optimize the production of both biofuels and heat integrate them while optimizing the water consumption. Multi‐effect distillation is included to reduce the energy and cooling water consumption for ethanol dehydration. In both cases, the optimal algae composition results in 60% oil, 30% starch, and 10% protein. The best alternative for the production of biofuels corresponds to a production price of 0.35 $/gal, using enzymes, with energy and water consumption values (4.00 MJ/gal and 0.59 gal/gal). © 2013 American Institute of Chemical Engineers AIChE J, 59: 2872–2883, 2013  相似文献   

8.
9.
Protopanaxadiol (PPD), an aglycon found in several dammarene-type ginsenosides, has high potency as a pharmaceutical. Nevertheless, application of these ginsenosides has been limited because of the high production cost due to the rare content of PPD in Panax ginseng and a long cultivation time (4–6 years). For the biological mass production of the PPD, de novo biosynthetic pathways for PPD were introduced in Saccharomyces cerevisiae and the metabolic flux toward the target molecule was restructured to avoid competition for carbon sources between native metabolic pathways and de novo biosynthetic pathways producing PPD in S. cerevisiae. Here, we report a CRISPRi (clustered regularly interspaced short palindromic repeats interference)-based customized metabolic flux system which downregulates the lanosterol (a competing metabolite of dammarenediol-II (DD-II)) synthase in S. cerevisiae. With the CRISPRi-mediated suppression of lanosterol synthase and diversion of lanosterol to DD-II and PPD in S. cerevisiae, we increased PPD production 14.4-fold in shake-flask fermentation and 5.7-fold in a long-term batch-fed fermentation.  相似文献   

10.
从黄海、南海部分海域采集水样,分离纯化了240株微藻,对其进行了分类与鉴定,从其中挑选8株生长较快的藻种进行扩大培养。经离心,冷冻干燥后得到藻粉,进而对藻种的淀粉、纤维素、总脂及可溶性糖含量进行了测量,以期筛选到目标能源微藻藻种。藻株Navicula sp.TW-2的油脂含量达到41.3%,生长速度快,生物量也较大,可以作为制备生物柴油的出发藻种。藻株Nannochloropsis sp.NB-3的纤维素含量达到9.26%,可溶性糖含量达到22.3%,生物量大,经过预处理发酵后生物乙醇产率可达7.75%,是制备生物燃料乙醇的优良藻株。  相似文献   

11.
12.
BACKGROUND: The aim of this study was to examine the repeated batch production of bioethanol from sludge‐containing cassava mash as starchy substrate by flocculating yeast to improve volumetric bioethanol productivity and to simplify the process of a pre‐culture system. RESULTS: For the repeated batch production of bioethanol using cassava mash, the optimal recycling volume ratio was found to be 5%. The repeated batch fermentation was completed within 36 h, while the batch fermentation was completed after 42 h. Volumetric productivity, final ethanol concentration, and ethanol yield were attained to 2.15 g L?1 h?1, 83.64 g L?1, and 85.15%, respectively. Although cell accumulation in the repeated batch process is difficult due to the cassava mash, the repeated batch process using Saccharomyces cerevisiae CHFY0321 could exhibited 10‐fold higher initial viable cell number (1.7 × 107 CFU mL?1) than that of the batch process. CONCLUSION: The liquefied cassava powder was directly used for the repeated batch process without removal of sludge. Repeated batch bioethanol production by simultaneous saccharification and fermentation using self‐flocculating yeast could reduce process costs and accelerate commercial applications. This result was probably due in part to the effect of the initial viable cell density. Copyright © 2008 Society of Chemical Industry  相似文献   

13.
重组酿酒酵母生物合成菜油甾醇   总被引:2,自引:0,他引:2       下载免费PDF全文
菜油甾醇作为甾体药物(孕酮、雄烯二酮、氢化可的松等)的重要合成前体已受到国内外研究学者的广泛关注。首先通过生物信息学分析,筛选了10种不同来源的7-脱氢胆固醇还原酶DHCR7,并采用CRISPR/Cas9基因编辑技术将酿酒酵母(Saccharomyces cerevisiae)内源的ERG5基因替换成不同来源的DHCR7基因,构建了菜油甾醇合成菌株。结果发现整合来源于Pangasianodon hypophthalmus DHCR7的菌株Zw507表现出最高的菜油甾醇的产量216.93 mg/L。进一步筛选了10种酵母内源启动强度较强的启动子来与PhDHCR7基因进行组合,结果显示以TEF1p为启动子时菜油甾醇的产量最高可达253.35 mg/L。为了进一步提高菜油甾醇产量,增加了DHCR7表达盒在酵母基因组上的拷贝数。当拷贝数为3个时,菜油甾醇的产量达到最高302.27 mg/L。最终,通过5 L发酵罐进行补料分批发酵,实现了916.88 mg/L菜油甾醇产量。该菌株可作为后续甾体药物生物合成的优良底盘细胞。  相似文献   

14.
The continuous production of ethanol from carob pod extract by immobilized Saccharomyces cerevisiae in a packed-bed reactor has been investigated. At a substrate concentration of 150 g dm?3, maximum ethanol productivity of 16 g dm?3 h?1 was obtained at D = 0·4 h?1 with 62·3% of theoretical yield and 83·6% sugars′ utilization. At a dilution rate of 0·1 h?1, optimal ethanol productivity was achieved in the pH range 3·5–5·5, temperature range 30–35·C and initial sugar concentration of 200 g dm?3. Maximum ethanol productivity of 24·5 g dm?3 h?1 was obtained at D = 0·5 h?1 with 58·8% of theoretical yield and 85% sugars′ utilization when non-sterilized carob pod extract containing 200 g dm?3 total sugars was used as feed material. The bioreactor system was operated at a constant dilution rate of 0·5 h?1 for 30 days without loss of the original immobilized yeast activity. In this case, the average ethanol productivity, ethanol yield (% of theoretical) and sugars′ utilization were 25 g dm?3 h?1, 58·8% and 85·5%, respectively.  相似文献   

15.
16.
BACKGROUND: Approximately 0.7 ? 1 × 106 dry tons of citrus processing waste (CPW) are produced annually in the United States. CPW is sold as animal feed but often the financial return does not exceed the production cost. Polysaccharides comprise 40% of the total dry matter of which pectin is the major component. CPW was steam treated to extract pectin fragments (PFs) as a value added co–product prior to fermentation of other sugars for biofuels production. RESULTS: PFs were extracted in high yields, along with polymeric arabinans, galactans and arabinogalactans. The extracted polysaccharides ranged in size from small oligomers to polymers of ~700 000 g mol?1. Acidified treatments led to greater fragmentation of water soluble polysaccharides, but did not enhance fragmentation of pectins to small oligomers (> 30 mer). Methylesterified PFs, arabinans and galactans were recovered by ethanol precipitation while demethylesterified PFs were recovered and purified by precipitation with dilute HCl. CONCLUSION: Steam treatment of CPW provides for rapid, efficient fragmentation of protopectin into highly methylesterified PFs that could be recovered by precipitation. The steaming process for preparation of PFs is environmentally friendly. No toxic chemicals are introduced and the remaining CPW can be used in fermentations to produce ethanol and other compounds. © 2012 Society of Chemical Industry  相似文献   

17.
BACKGROUND: Continuous ethanol fermentation of concentrated food waste hydrolysates has been studied. The process was carried out in an immobilized cell reactor with beads of calcium‐alginate containing immobilized Saccharomyces cerevisiae H058 at temperature 30 °C and pH 5.0. RESULTS: The total residual sugar decreased with increase of hydraulic retention time (HRT) under various reducing sugar concentrations. Ethanol production by immobilized cells increased with increase in HRT, regardless of the substrate concentrations employed. The highest ethanol concentration of 89.28 g L?1 was achieved at an HRT of 5.87 h and reducing sugar concentration of 200 g L?1. At an HRT of 1.47 h, the maximum volumetric ethanol productivity of 49.88 g L?1 h?1 and the highest ethanol yield of 0.48 g g?1 were achieved at reducing sugar concentration of 160 and 200 g L?1, respectively. The difference between the fresh and the 30‐day Ca–alginate immobilized cell was also shown by scanning electronic micrographs of beads taken from their outer and inner surfaces. CONCLUSIONS: Continuous ethanol production from concentrated food waste hydrolysates using immobilized yeast cells is promising in view of the high ethanol productivity obtained at relatively high conversion and excellent reactor stability. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
BACKGROUND: Photoreceptors have been identified in Saccharomyces cerevisae, however, the influence of light on the performance of ethanol fermentation of S. cerevisiae is not yet clear. The aims of this study are to elucidate the influence of light wavelength and intensity on the growth and ethanol production of S. cerevisiae and to describe a novel two‐stage LED light process to optimize ethanol fermentation. RESULTS: Experimental results indicated that maximum biomass concentration Xmax of the batch under red LED light increased monotonically with light intensity, and the optimal specific product yield Yp/x was 13.2 g g?1 at 600 lux. Maximum ethanol concentration Pmax of the batch under blue LED light increased monotonically with light intensity, and the optimal Yp/x was 18.4 g g?1 at 900 lux. A novel two‐stage LED light process achieved maximum Pmax, of 98.7 g dm?3 resulting in 36% improvement compared with that of the batch in the dark. CONCLUSION: The light wavelength and its intensity significantly affected cell growth and ethanol formation of S. cerevisiae. Red LED light (630 nm) stimulated cell growth but slightly inhibited ethanol formation. In contrast, blue LED light (470 nm) significantly inhibited cell growth but stimulated ethanol formation. A novel two‐stage LED light process has been successfully demonstrated to optimize ethanol fermentation of S. cerevisiae. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flow sheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back‐calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting the simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach but provides a guide toward a sound engineering approach to this challenging and important problem. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4641–4654, 2013  相似文献   

20.
BACKGROUND: Bioethanol produced from renewable biomass, such as corn meal, is a biofuel that is both renewable and environmentally friendly. Significant scientific and technological investments will be needed to achieve substitution of conventional fossil fuels with alternative fuels. The ethanol fermentation of enzymatically obtained corn meal hydrolyzates by free and immobilized cells of Saccharomyces cerevisiae var. ellipsoideus yeast in a batch system was studied. The initial glucose and inoculum concentration and the time required for the efficient ethanol production were optimized taking into account parameters such as ethanol concentration, ethanol yield, percentage of the theoretical yield of ethanol and volumetric productivity in both immobilized and free cell systems. RESULTS: The yeast cells were immobilized in Ca–alginate by an electrostatic droplet generation method. An optimal initial inoculum concentration of 2% (v/v) and optimal fermentation time of 38 h for both immobilized and free yeasts were determined. An optimal initial glucose concentration of 150 g L?1 for free system was achieved. At the initial glucose concentration of 176 g L no substrate or product inhibition were achieved with immobilized yeast. CONCLUSION: By immobilization of the yeast into Ca–alginate using the method of electrostatic droplet generation a superior system was realized, which exhibited lower substrate inhibition and higher tolerance to ethanol. The cells of S. cerevisiae var. ellipsoideus yeast entrapped in Ca–alginate showed good physical and chemical stability, and no substrate and product diffusion restrictions were noticed. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号