首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, atomic force microscopy (AFM) imaging has been used to study the structural properties of polycrystalline CuInSe2 films, which are widely used as absorber materials in thin film solar cell devices. This technique demonstrated an excellent capability for the reproducible imaging of these rough polycrystalline materials. AFM imaging in combination with statistical analysis revealed distinct differences in the structural properties (i.e. grain width and height distributions, root‐mean‐square (RMS) and peak to valley (R(p–v)) roughness values) as a function of the specific growth technique used and the bulk composition of the films. In the case of Cu‐rich films, prepared by the H2Se/Ar treatment of Cu/In/Cu alloys, rough surface structures were in general observed. Statistical analysis revealed two distinct distribution of grains in these samples (1.0–2.5 μm and 3–5.5 μm) with large RMS and R(p–v) roughness values of 380 nm and 2.6 μm, respectively. In‐rich films were characterized by the presence of much smaller, roughly circular clusters with a significant reduction in both the width and height distributions as well as RMS and R(p–v) roughness values. The most successful growth techniques, in terms of producing homogeneous and dense films, were in the cases of H2Se/Ar treated metallic InSe/Cu/InSe alloys and the coevaporation of all materials to form CuInSe2. Both these techniques produced absorber films with very narrow grain width and height distributions as well as small roughness values. It was possible to establish that high efficiency devices are associated with the use of absorber films with narrow width distributions between 0.5 and 2 μm and small RMS (> 300 nm) roughness values. These values are used as a figure of merit in our laboratories to evaluate the structural properties of our CuInSe2 thin films.  相似文献   

2.
It is known that pre‐eclampsia affects the structure of the umbilical cord including changes in diameter and wall thickness. In this work, the morphological changes of umbilical cords associated with pre‐eclampsia were investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The SEM images showed the overall structural changes in the umbilical cord, and the AFM imaged the surface of the cord in the nanometer range. The amount of Wharton's jelly was reduced in the cords of pre‐eclampsia patients and it was holed along the boundary. Compared to a normal pregnancy, the surface of a pre‐eclampsia cord was relatively smooth. In all components (Wharton's jelly, veins, and arteries), the values for surface roughness, Sa (average value of the roughness), Sq (root mean square), and Sz (peak to peak value), were smaller than those of the control (P < 0.05). Especially, the values for Sa of veins were ~fourfold less than those of the controls (P < 0.05). In pre‐eclamptic cords, the amount of elastin in veins was increased while that of the artery was decreased. Microsc. Res. Tech. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
A series of Zn ion‐doped pentaerythritol tetranitrate (PETN) nanoislands in the form of thin films were prepared on Si substrates using spin coating. The effect of Zn concentrations on the sublimation energy was investigated by atomic force microscopy (AFM). The pure and Zn‐doped nanoislands are imaged by AFM in contact mode at room temperature after annealing isothermally for a given time. The volume of the islands starts to decrease after annealing at 45°C for pure PETN, whereas Zn‐doped nanoislands start to decrease in height and volume after annealing at 55–58°C. The minimum activation energy is found to be 29.7 Kcal/mol for 1,000 ppm Zn concentration. These studies are important for the long‐term stabilization of PETN. SCANNING 31: 181–187, 2009. © 2009 Wiley Periodicals, Inc.  相似文献   

4.
Conducting atomic force microscopy and scanning surface potential microscopy were used to study the local electrical properties of gallium‐doped zinc oxide (GZO) films prepared by pulsed laser deposition (PLD) on a polyimide (PI) substrate. For a PLD deposition process time of 8 min, the root‐mean‐square roughness, coverage percentage of the conducting regions, and mean work function on the GZO surface were 2.33 nm, 96.6%, and 4.82 eV, respectively. When the GZO/PI substrate was used for a polymer light‐emitting diode (PLED), the electroluminescence intensity increased by nearly 20% compared to a standard PLED, which was based on a commercial‐ITO/glass substrate. Microsc. Res. Tech. 76:783–787, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
ZnO films were deposited onto glass, ITO coated glass, and sapphire substrate by spray pyrolysis, and subsequently annealed at the same temperature of 400°C for 3 h. The role of substrate on the properties of ZnO films was investigated. The structural and optical properties of the films were investigated by X‐ray diffractometer (XRD) and photoluminescence (PL) spectrophotometer, respectively. The surface morphology of the nanostructured ZnO film was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Crystallographic properties revealed that the ZnO films deposited on sapphire and ITO substrates exhibit a strong c‐axis orientation of grains with hexagonal wurtzite structure. Extremely high UV emission intensity was determined in the film on ITO. The different luminescence behaviors was discussed, which would be caused by least value of strain in the film. Films grown on different substrates revealed differences in the morphology. ZnO films on ITO and sapphire substrates revealed better morphology than that of the film on glass. AFM images of the films prepared on ITO show uniform distribution of grains with large surface roughness, suitable for application in dye sensitized solar cells. Microsc. Res. Tech. 77:211–215, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
7.
This work describes an analysis of titanium dioxide (TiO2) thin films prepared on silicon substrates by direct current (DC) planar magnetron sputtering system in O2/Ar atmosphere in correlation with three‐dimensional (3D) surface characterization using atomic force microscopy (AFM). The samples were grown at temperatures 200, 300, and 400°C on silicon substrate using the same deposition time (30 min) and were distributed into four groups: Group I (as‐deposited samples), Group II (samples annealed at 200°C), Group III (samples annealed at 300°C), and Group IV (samples annealed at 400°C). AFM images with a size of 0.95 μm × 0.95 μm were recorded with a scanning resolution of 256 × 256 pixels. Stereometric analysis was carried out on the basis of AFM data, and the surface topography was described according to ISO 25178‐2:2012 and American Society of Mechanical Engineers (ASME) B46.1‐2009 standards. The maximum and minimum root mean square roughnesses were observed in surfaces of Group II (Sq = 7.96 ± 0.1 nm) and Group IV (Sq = 3.87 ± 0.1 nm), respectively.  相似文献   

8.
This paper analyses the three‐dimensional (3‐D) surface texture of growing diamond nanocrystals on Au thin films as catalyst on p‐type Si substrate using hot filament chemical vapour deposition (HFCVD). Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM), Raman, X‐ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were applied also to characterize the 3‐D surface texture data in connection with the statistical, and fractal analyses. This type of 3‐D morphology allows a deeper understanding of structure/property relationships and surface defects in prepared samples. Our results indicate a promising way for preparing high‐quality diamond nanocrystals on Au thin films as catalyst on p‐type Si substrate via HFCVD method.  相似文献   

9.
Conducting atomic force microscopy and scanning surface potential microscopy were adopted to investigate the nanoscale surface electrical properties of N‐doped aluminum zinc oxide (AZO:N) films that were prepared by pulsed laser deposition (PLD) at various substrate temperatures. Experimental results demonstrated that when the substrate temperature is 150°C and the N2O background pressure is 150 mTorr, the N‐dopant concentration on the surface is optimal. In addition, the root‐mean‐square roughness value of the film surface, the low contact current (<400 nA) conducting region as a percentage of the total area, and the mean work function value are 1.43 nm, 96.9%, and 4.88 eV, respectively, all of which are better than those of the optimal AZO film made by PLD. This result indicates that N‐doped AZO films are better for use as window materials in polymer light‐emitting diodes. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Various labial and lingual orthodontic appliances with aesthetic materials have been developed due to an increased demand in aesthetic orthodontic treatment. However, there are few reports regarding the morphology of lingual orthodontic appliances. Therefore, this study evaluates the roughness of slot surfaces of various orthodontic lingual brackets using field emission scanning electron microscopy (FE‐SEM) and atomic force microscopy (AFM). Three types of stainless steel lingual brackets (Stealth®, 7th Generation®, and Clippy L®) and one gold lingual bracket (Incognito?) with a slot size of 0.018 inches × 0.025 inches (0.457 × 0.635 mm2) were selected as representative lingual materials. Both FE‐SEM and AFM examinations showed that the Stealth® and Clippy L® brackets had the lowest surface roughness, while the 7th Generation® bracket had the highest surface roughness. There was a significant difference in surface morphology between the types of lingual brackets, even when composed of the same material. The surface roughness of the bracket slot was dependent on the manufacturing process or surface polishing process rather than the fundamental properties of the bracket materials. There was no significant difference in the mean surface roughness of the slot floor between gold and stainless steel lingual brackets. These findings suggest that, although the gold lingual bracket is very expensive, it has great potential for use in patients with nickel allergy.  相似文献   

11.
The tribological behavior of polyphenylene sulfide (PPS) composites filled with micro and nano CuO particles in water-lubricated sliding condition were studied. Pin-on-disk sliding tests were performed against a steel counterface of surface roughness 0.09–0.11 μm. The lubrication regimes were established from friction data corresponding to various combinations of loads and sliding speeds. Later experiments were performed using the sliding speed of 0.5 m/s and contact pressure of 1.95 MPa, which corresponded to boundary lubrication regime. Micro CuO particles as the filler were effective in reducing the wear of PPS but nano CuO particles did not reduce wear. The steady state wear rate of PPS-30 vol.% micro CuO composite was about 10% of that of unfilled PPS and the coefficient of friction in this case was the lowest. The examination of the topography of worn pin surfaces of nano CuO-filled PPS by SEM revealed grooving features indicating three-body abrasion. The transfer films formed on the counterfaces during sliding were studied by optical microscopy and AFM. The wear behavior of the composites in water-lubricated sliding is explained using the characteristics of worn pin surfaces and transfer films on the counterface.  相似文献   

12.
The physical properties of electronic devices made by 2,6‐diphenyl anthracene (DPA) are influenced by the microtexture of DPA surfaces. This work focused on the experimental investigation of the 3‐D surface microtexture of DPA thin films deposited on OTS (octadecyltrichlorosilane), HMDS (Hexamethyldisilasane), OTMS (octadecyltrimethoxysilane), and Si/SiO2 (300 nm SiO2 thickness) substrates with 5 and 50 nm thicknesses and 5 and 10 μm scan size. The thin film surfaces were recorded using atomic force microscopy (AFM) and their images were stereometrically analyzed to obtain statistical parameters, in accordance with ASME B46.1‐2009 and ISO 25178‐2: 2012. The results showed the effect of different manufacturing parameters on microtexture values where the granular structure is confirmed in all films. In addition, root mean square is increased by increasing the thickness from 5 to 50 nm for all types of substrates.  相似文献   

13.
Lim SH  Ryu GY  Seo JH  Park JH  Youn SW  Kim YK  Shin DM 《Ultramicroscopy》2008,108(10):1251-1255
Most organic light-emitting diodes (OLEDs) have a multilayer structure composed of organic layers such as a hole injection layer (HIL), a hole transport layer (HTL), an emission layer (EML), an electron transport layer (ETL) and an electron injection layer (EIL) sandwiched between two electrodes. The organic layers are thin solid films with a thickness from a few nano meters to a few tenths nano meter, respectively. Surface morphology of an organic thin solid film in OLEDs depends on the molecular structure of the organic material and has an affect on device performance. To analyze the effect of surface morphology of an organic thin solid film on fluorescence and electroluminescence (EL) properties, thin solid films of 4-(dicyanomethylene)-2-methyl-6-(julolidin-4-yl-vinyl)-4H-pyran (DCM2) and new red fluorophores, (2E,2′E)-3,3′-[4,4″-bis(dimethylamino)-1,1′:4′,1″-terphenyl-2′,5′-diyl]bis[2-(2-thienyl)acrylonitrile] (ABCV-Th) and (2Z,2′Z)-3,3′-[4,4″-bis(dimethylamino)-1,1′:4′,1″-terphenyl-2′,5′-diyl]bis(2-phenylacrylonitrile) (ABCV-P) were investigated by atomic force microscopy (AFM). The samples for EL and AFM measurement were fabricated by the high-vacuum thermal deposition (8×10−7 Torr) of organic materials onto the surface of indium tin oxide (ITO)-coated glass substrate, in which the layer structures of samples for AFM measurement and those for EL measurement were ITO/NPB (40 nm)/red emitters (80 nm) and ITO/NPB (40 nm)/red emitters (80 nm)/BCP (30 nm)/Liq (2 nm)/Al (100 nm), respectively. The analysis based on AFM measurements well supported that the photoluminescence properties and the device performance were very much dependent upon surface morphology of an organic thin layer.  相似文献   

14.
15.
The aim of this study was to evaluate the three‐dimensional (3D) surface micromorphology of zinc/silver particles (Zn/AgPs) composite coatings with antibacterial activity prepared using an electrodeposition technique. These 3D nanostructures were investigated over square areas of 5 μm × 5 μm by atomic force microscopy (AFM), fractal, and wavelet analysis. The fractal analysis of 3D surface roughness revealed that (Zn/AgPs) composite coatings have fractal geometry. Triangulation method, based on the linear interpolation type, applied for AFM data was employed in order to characterise the surfaces topographically (in amplitude, spatial distribution and pattern of surface characteristics). The surface fractal dimension Df, as well as height values distribution have been determined for the 3D nanostructure surfaces. Microsc. Res. Tech. 78:1082–1089, 2015. © 2015 The Authors published by Wiley Periodicals, Inc.  相似文献   

16.
17.
ZnO thin film was deposited on various metal electrodes by reactive sputtering, and c-axis preferred orientation of the film has been studied. ZnO, which has high piezoelectricity, is promising for oscillators or filter devices such as surface acoustic wave (SAW) device, gas sensor, and film bulk acoustic resonator (FBAR). But, for the application of ZnO film for these devices, the film should be grown with c-axis normal to the electrode. In this study, Pt, Al, and Au were deposited on Si wafer, and the surface roughness and crystal structure of the ZnO film on the electrode were investigated using AFM, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Columnar structures of ZnO films were grown with c-axis normal to all electrodes, and among them Pt electrode showed the highest preferred orientation of ZnO film.  相似文献   

18.
A multifractal analysis has been performed on the 3D (three-dimensional) surface microtexture of magnesium-doped zinc oxide (ZnO:Mg) thin films with doping concentration of 0, 2, 4, and 5%. Thin films were deposited onto the glass substrates via the sol–gel spin coating method. The effect of magnesium doping, on the crystal structure, morphology, and band gap for ZnO:Mg thin films has been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV–Vis spectroscopy. It has been observed that the surface of ZnO thin films is multifractal in nature. However, multifractality and complexity observed to decrease with increasing content of Mg in ZnO thin films due to formation of islands on the surface in accordance with Volmer–Weber growth mechanism. The investigations revealed that crystallinity, microtexture, morphology, and optical properties of the thin films can be tuned by controlling the Mg content within the ZnO lattice. In particular, their optical band gap energies were 3.27, 3.31, 3.34, and 3.33 eV at 0, 2, 4, and 5%, respectively. The prepared thin films of ZnO:Mg with tuned characteristics would have promising applications in optoelectronic devices.  相似文献   

19.
用改进的溶胶-凝胶法在Pt(111)/Ti/SiO2/Si(100)衬底上制备了不同厚度的高度(111)取向的Pb(Zr0.53Ti0.47)O3薄膜.运用X射线衍射(XRD)和原子力显微镜(AFM)分析了薄膜的微结构,原子力显微镜表明厚度为0.3μm和0.56μm的PZT薄膜的晶粒尺寸和表面粗糙度分别为0.2~0.3μm、2~3μm和0.92nm、34nm.0.3μm和0.56μm PZT薄膜的剩余极化(Pr)和矫顽场(Ec)分别为32.2μC/2、79.9kV/cm, 27.7μC/cm2、54.4kV/cm;在频率100KHz时,薄膜的介电常数和介电损耗分别为539、0.066,821、0.029.  相似文献   

20.
The morphological and quantitative differences between arthritic fibroblast‐like synoviocytes (FLS) and normal FLS were determined as an effective diagnostic tool for rheumatoid arthritis (RA), and confirmed using atomic force microscopy (AFM). Collagen‐induced arthritic (CIA) mice and normal mice were prepared and FLS were isolated by enzymatic digestion from the synovial tissue of sacrificed mice at 5‐week and 8‐week pathogenesis periods. Analysis of cell morphology using AFM revealed that the surface roughness around the nucleus and around the branched cytoplasm was significantly higher in CIA FLS (< 0.05) than that in normal FLS. In addition, the roughness of two different sites on the arthritic FLS increased with an increase in the duration of pathogenesis. These results strongly suggest that AFM can be widely used as a diagnostic tool in cytopathology to detect the early signs of RA and various others diseases at the intercellular level. Microsc. Res. Tech. 78:982–988, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号