首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Coatings based on self‐assembled molecules (SAMs) for corrosion protection of aircraft aluminum alloys have been studied to evaluate their potentialities as replacements to yellow chromate conversion coatings (CCC), due to the toxicity of these leading to environmental problems. In this work, the influence of alkane diphosphonates self‐assembling molecules on the corrosion resistance of the AA7475‐T761 cladded with AA7072 was investigated by electrochemical impedance spectroscopy and cathodic and anodic polarization curves, in naturally aerated 0.5 mol/L Na2SO4 aqueous solution, with pH adjusted to 4. Corrosion accelerated experiments (salt spray tests) were also carried out to examine the resistance of the SAM treated samples against corrosion. The results suggested that the development of boehmite (aluminum oxide) layer with incorporation of SAM was beneficial to the corrosion resistance of the tested aluminum alloy. Samples surface treated with SAM or aluminum oxide/SAM (without and with subsequent polyester layer) showed better corrosion resistance results than samples with CCC, indicating that this last type of coating containing hexavalent chromium could be replaced by the environmentally friendly pre‐treatment corresponding to boehmite growth followed by incorporation of SAM.  相似文献   

2.
In this study, cerium and lanthanum chloride binary mixtures conversion coatings were investigated as corrosion inhibitors for silicon carbide particulates reinforced AA5A06 aluminium composite and AA5A06 aluminium alloy. Electrochemical impedance spectroscopy and potentiodynamic polarization tests revealed that cerium (III) chloride additions markedly improved the pitting corrosion resistance as compared to lanthanum (III) chloride additions, with maximum increase noted for samples treated with 750 ppm cerium (III) + 250 ppm lanthanum (III) chlorides. Scanning electron microscopy, energy dispersion spectroscopy and X‐ray photoelectron spectroscopy examinations revealed the existence of a heterogeneous layer formed by precipitation of cerium/lanthanum oxide/hydroxide on the cathodic intermetallics and an aluminium oxide film on the rest of the metal matrix. Improved corrosion resistance was attained for SiC particulates reinforced aluminium composite by means of the cerium/lanthanum conversion treatment, due to the presence of mainly cerium (IV) species as a result of oxidation of cerium (III), which provides auto‐protection properties.  相似文献   

3.
AZ91 D 镁合金表面铈转化膜及环氧 / 氟碳涂层附着性研究   总被引:1,自引:4,他引:1  
利用化学浸泡法在AZ91D镁合金表面制备铈盐转化膜,优化了铈盐转化处理工艺,研究了铈盐转化膜的微观形貌、组织结构及耐蚀性能。在转化膜表面分别涂覆环氧树脂和氟碳树脂涂层,测试了两种复合涂层的力学性能。结果表明:铈盐转化膜由双层膜组成,在优化的工艺条件下进行转化处理能够提高镁合金的耐腐蚀能力;铈盐转化膜对环氧树脂的适应性要优于氟碳树脂。  相似文献   

4.
Chromate conversion coatings can be successfully used for corrosion protection of magnesium alloys. However, the environmental laws have imposed severe restrictions on chromate use in many countries. In this study, a novel protective environmental‐functionally gradient coating was formed on AZ91D magnesium alloy by non‐chromate surface treatments, which consisted of pre‐etching followed by cerium‐based chemical conversion before applying the sol–gel CeO2 film. It was determined by the analysis of X‐ray diffraction that the gradient coating was mainly composed of CeO2. The calculation, based on the Scherrer formula, further revealed the formation of nanocrystalline structure in the coating. Scanning electron microscopy (SEM) observations showed that the coating was homogeneous and compact, no obvious cracked structure occurred. According to the immersion tests, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this novel environmental‐functionally gradient coating.  相似文献   

5.
Golden yellow rare earths chemical conversion coating was obtained on the surface of magnesium alloy by immersing in cerium sulfate solution.The corrosion resistance of RE conversion coating was evaluated using inmersion test and potentiodynamic polarization measurements in 3.5%NaCl solution.The morphologies of samples before corrosion and after corrosion were observed by SEM.The structures and compositions of the RE conversion coating were studied by means of XPS,XRD and IR.The results show that,the con...  相似文献   

6.
Application of a composite coating on AM60B magnesium alloy consisting of cerium–vanadium conversion coating and a hybrid sol–gel layer was investigated. Scanning electron microscopy and energy dispersive X-ray spectroscopy analyses revealed a cracked nodular structure for the cerium–vanadium conversion coating which was mainly composed of O, Ce, V, and Mg atoms. All the cracks in the conversion coating were completely sealed by a thin, compact and defect-free hybrid sol–gel film. Potentiodynamic polarization and electrochemical impedance spectroscopy experiments in Harrison's solution showed that the cerium–vanadium conversion coating provides minimal protection against corrosion while the composite coating significantly increases the corrosion resistance of the magnesium alloy. Sol–gel film provides protection against corrosion by sealing cracks in the cerium–vanadium conversion coating and acting as a barrier. Scanning electron microscopy analyses after polarization tests confirmed the results obtained by the electrochemical tests.  相似文献   

7.
In this paper the effect of several parameters, such as temperature, time of immersion, cerium ions and hydrogen peroxide concentration, pH of the conversion solution, on the composition and morphology of the conversion layer are investigated as well as on its corrosion resistance in chloride environments. The cerium‐based chemical conversion coatings ennobles the corrosion potential and inhibits both the cathodic and anodic reactions rate. Using a cerium (III) chloride solution a not homogeneous coating is obtained and agglomerates with a “dry‐mud” morphology of mixed cerium‐aluminium oxide are deposited above the cathodic intermetallic particles, while using a cerium (III) nitrate solution the coating is more uniform but thinner than that obtained with cerium (III) chloride. Solution temperature below 50°C and time of immersion of 10 minutes produces a coating with better corrosion resistance.  相似文献   

8.
LY12 Al合金铈转化膜的研究   总被引:5,自引:1,他引:4  
确定了Al合金常温稀土(铈)化学转化膜工艺.并用电 化学法、扫描电镜研究了其成膜过程、耐蚀性,分析了化学成分和形貌.结果表明,工艺简 单,成膜速度快,耐蚀性好.添加剂有效促进了铈的转化处理.  相似文献   

9.
A stannate chemical conversion process followed by an activation procedure was employed as the pre‐treatment process for AZ91D magnesium alloy substrate. Zn was electroplated onto the pre‐treated AZ91D magnesium alloy surface from pyrophosphate bath to improve the corrosion resistance and the solderability. The surface morphologies of conversion coating and zinc coating were examined with scanning electron microscope (SEM). The phase composition of conversion coating was investigated by X‐ray diffraction (XRD). The electrochemical corrosion behavior of the coatings in the corrosive solution was investigated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The experimental results showed that the activated stannate chemical conversion coating provided a suitable interface between zinc coating and the AZ91D magnesium alloy substrate. The corrosion resistance of the AZ91D substrate was improved by the zinc coating.  相似文献   

10.
LY12铝合金三价铈盐溶液中成膜工艺   总被引:3,自引:2,他引:1  
利用浸渍法在LY12铝合金表面获得了金黄色的铈转化膜, 确定了常温稀土(铈)化学转化膜成膜工艺. 应用电化学方法和浸泡试验研究了铝合金铈化学转化膜的成膜动力学及转化膜在3.5%NaCl溶液中的耐蚀性能, 并与传统的Alodine处理工艺进行了比较. 采用表面分析技术分析了膜的成分并观察了膜的微观形貌. 结果表明, 本稀土处理工艺成膜工艺简单, 成膜速度快, 耐蚀性能略优于Alodine转化膜, 能有效地抑制铝合金的点腐蚀. SEM表明铝合金铈转化膜由许多球形颗粒和块状膜构成. EDAX能谱表明, 铈转化膜主要含有铈、氧和铝3种元素, 球形颗粒含有较高浓度的氧和铈.  相似文献   

11.
BECAUSE OF A HIGHER CHEMICAL ACTIVITYzinc and zinc alloys(in bulk or in coating form)corrode rapidly in moist atmospheres recovering withwhite corrosion products—white rust and in acidicclimatic conditions becoming grey[l].So passivition orchemical conversion treatments is often needed fortheir corrosion protection.This is generally done bymeans of chromate treatment which offers a goodcorrosion inhibition.However,chromates are highlytoxic and carcinogenic[2]and their use can lead…  相似文献   

12.
为改善服役于海洋环境下的结构铝合金的耐腐蚀性及其与底漆的配套性能,在两种典型海洋工程用结构铝合金(5083-H116和6061-T6)基体上制备了一种无铬钛/锆基化学转化膜———Alum-nanoceramic coating。采用扫描电子显微镜(SEM)和能谱仪(EDS)对膜层形貌及组成进行了表征,通过动电位极化曲线和电化学阻抗谱研究了膜层的电化学性能,利用中性盐雾试验及胶带剥离试验分别对膜层耐蚀性及其与环氧厚浆底漆的配套性进行了考察。结果表明:5083和6061铝合金Alum-nanoceramic无铬化学转化膜中性盐雾试验白锈面积达到5%所需时间分别为240h和168h;5083铝合金Alum-nanoceramic膜层比后者显示出更好的与环氧厚浆底漆的配套性能。  相似文献   

13.
The effects of a pretreatment process on the formation and properties of lanthanum based conversion coatings on AA2024-T3 was investigated using optical and scanning electron microscopy (SEM), X-ray diffraction (XRD) and open circuit potential (OCP) measurements. The results indicate that the conventional alkaline activation pretreatment with acidic desmutting could not create a suitable condition to produce lanthanum based conversion coating on AA2024-T3. Therefore, in this study, a new approach to produce lanthanum based conversion coating on AA2024-T3 by acidic pretreatment is proposed. The pretreatment of the alloy in acidic and chloride environments (90 s at 30 vol % HCl) creates more cathodic sites on AA2024-T3 compared to alkaline activation with acidic desmutting. Additionally, it was found that the formation stages of lanthanum based conversion coating is similar to those of cerium based conversion coating on AA2024-T3 except lanthanum ions require more localized pH increase to deposit on the alloy.  相似文献   

14.
稀土铈对锌-铁合金镀层耐蚀性的影响   总被引:5,自引:4,他引:5  
章江洪  张英杰  范云鹰  陈阵 《表面技术》2004,33(1):28-29,47
研究了铈盐对电沉积锌-铁合金镀层耐蚀性的影响,通过失重法、浸泡实验、电化学腐蚀参数的测量,得出在镀液中添加一定量的铈盐能显著改善镀层的耐蚀性能.扫描电镜测定镀层表面形貌的结果表明,定量铈盐参与下,可获得更加致密的镀层,这正是提高镀层耐蚀性的原因.  相似文献   

15.
A superhydrophobic ceria-based composite coating is developed to improve anticorrosion properties of AZ61 magnesium alloy, fabricating via chemical conversion method followed by hydrothermal treatment. The cerium conversion coating has a block structure with microcracks. After the hydrothermal treatment, a dense CeO2 layer, porous CeO2 nanorods, and stearic absorbing layers are grown stepwise on the conversion coating. And the composite coating is hydrophobic or even superhydrophobic and has almost no microcracks. As the hydrothermal reaction time increases, the water contact angle of the composite coating first increases and then decreases, and it reaches the maximum value of 152° after hydrothermal treatment for 4 h. Both the dense CeO2 layer and the superhydrophobic stearic absorbing layer can effectively prevent the electrolyte from contacting the substrate; the corrosion current density of the superhydrophobic composite coating is lower than that of the hydrophilic composite coating and the cerium conversion coating, and has the best corrosion resistance.  相似文献   

16.
Silica based hybrid sol–gel coatings were developed to protect AA2024 alloy from corrosion. In order to have an active protection, cerium nitrate corrosion inhibitor was introduced into the coating system. The anti‐corrosion properties of the coatings were evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic scanning (PDS) methods. The structure of the films was studied by scanning electron microscopy (SEM) after corrosion. The results indicate that the improvement of the protection properties of the films occurred with immersion time. This would imply that cerium ions could reach the defects, hindering the corrosion reactions and thus reduces the corrosion rate.  相似文献   

17.
采用扫描电子显微镜,X射线能谱,Tafel极化曲线和电化学阻抗谱法研究了铈镧转化膜对AZ63镁合金耐蚀性能的影响。结果表明,铈和镧的复合转化膜比单一稀土膜的表面更加均匀致密,对镁合金的耐蚀性有明显改善。双稀土转化膜的缓蚀效果随着浸泡成膜时间的增长而增加。延长时效时间有助于铈和镧的进一步氧化,耐蚀性能先增后减,时效48 h膜层的耐蚀效果最好。  相似文献   

18.
A composite conversion coating was prepared on magnesmm alloy by the only one-step immersion treatment.The characteristics of the conversion coating were investigated by scanning electron microscopy(SEM)and X-ray photoelectron spectroscopy(XPS).The results indicate that the composite conversion coating consists of magnesmm hydroxide,magnesmm phosphate and manganese phosphate.The electrochemical behavior of the conversion coating was investigated systematically by electrochemical impedance spectroscopy(EIS) and potentiodynamic polarization measurement in different NaCl solutions.Polarization measurements and EIS results reveal that the magnesium alloy with the conversion coating have better corrosion resistance compared to the bare magnesium alloy in these conditions.And the corrosion rate of the magnesium alloy with conversion coating increases consistently with the chloride ion concentration.In alkaline conditions,the magnesium alloy with conversion coating has superior corrosion resistance by the synergistic effects between Mg(OH)_2 film and conversion coating.Moreover,the electrochemical corrosion mechanism of the magnesium alloy was analyzed with respect to the conversion coating in a Cl~- containing environment.  相似文献   

19.
The role of pre-treatment in the formation of a cerium conversion coating is investigated for the protection of AA2024-T3 and 7075-T6 alloys. The alloys were alkaline-etched and de-smutted in nitric acid, prior to cerium treatment in Ce(NO3)3 at 85 °C with H2O2 accelerator. Potentiodynamic polarization studies in 3.5% NaCl solution revealed a large shift of  300 mV of the corrosion potential below the pitting potential for the 7075-T6 alloy, which correlated with the development of a finely-textured, uniform coating. However, the formation of a uniform coating and protection was dependent upon the time of de-smutting, with non-uniform coatings resulting from extended times of de-smutting. In contrast, non-uniform coatings developed on the 2024-T3 alloy, with pitting potential at the corrosion potential, irrespective of the time of de-smutting. Findings for the 2024-T3 alloy indicate that extended de-smutting affects the enrichment of alloying elements.  相似文献   

20.
This paper aims to develop a chromium-free chemical conversion coating with good corrosion resistance. A novel chemical conversion coating was prepared on 6061 aluminum alloy by dipping in the treatment solution containing titanium/zirconium based-ions and sodium metaphosphate and cerium nitrate hexahydrate as additives. The morphology and composition of the conversion coatings were observed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The microarea structure of conversion coatings at different formation stages was analyzed by electron probe microanalyzer. The electrochemical polarization curve revealed that the corrosion potential of the conversion coating was −0.577 V and the corrosion current density was 0.1148 μA/cm2. The equivalent circuit fitted by AC impedance showed that the film resistance reaches 68,140 Ω. The formation of coating preferentially grows on the Al (Fe) Si intermetallic to form oxides of Ti and Zr; then TiO2 formed by a higher concentration of Ti4+ gradually covered ZrO2. Ce3+ could adsorb on the intermetallic compound, the hydrolysis of which causes the local pH of the solution to decrease and promotes the aluminum alloy dissolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号