首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
Because of the increasing medical‐veterinary importance of ticks, the development of alternative control methods, less aggressive to the host and the environment has become the target of several researches. In this sense, the present study analyzed the action of different concentrations (5, 10, and 20%) of andiroba seed oil (Carapa guianensis) on the reproductive system of Rhipicephalus sanguineus females, through histochemical techniques and the quantification of the reproductive efficiency index. The results showed that andiroba oil is a potent natural agent, able to cause several changes in the oocytes of this species, impairing the reproductive success, once this natural product induces great physiological changes in the oocytes in all development stages, such as drastic reduction in proteins, polysaccharides, and lipids in these cells, and these components are essential for the viability of the embryo. In addition, it was observed that this product stimulate the oviposition, mainly at the concentration of 20%. This higher production of eggs represents a defense mechanism developed by the organism in order to ensure the reproductive success of the species, even in the presence of the toxic agent. However, the results obtained suggested that the laid eggs would not be viable, due to the great changes undergone by the oocytes. Thus, the present study showed that the use of this vegetal product would be an alternative way to control the ticks, bringing benefits similar to the ones obtained through the use of synthetic acaricides; however, with less damage to nontarget organisms and the environment as well. Microsc. Res. Tech., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Ticks are ectoparasites of great medical and veterinary importance around the world and synthetic chemicals such as permethrin have been used for their control. This study provides a cytochemistry analysis of both degenerative and cell death processes in salivary glands of the brown dog tick Rhipicephalus sanguineus semi-engorged females exposed to 206, 1,031, and 2,062 ppm of permethrin. The results presented herein demonstrate that permethrin is a potent chemical acaricide that would act on the glandular tissue's morphophysiology in this tick species by eliciting severe changes in the acinus shape, intense vacuolation of the acinar cells' cytoplasm, marked glandular tissue disorganization, culminating in an advanced degenerative stage with consequent formation of many apoptotic bodies (cell death). In addition, permethrin induced major changes in the acinar cells' nucleus, such as a change both in its shape and size, chromatin marginalization, nuclear fragmentation, and appearance of picnotic nuclei, especially when the highest concentrations of the product were used. Thus, permethrin induced early degeneration of this tissue characterized by significant changes in the structure of acinar cells and production of enzymes related to the cell death process, in addition to interfering directly in the genetic material of these cells.  相似文献   

3.
The present study evaluated the efficacy of fluazuron (active ingredient of the acaricide Acatak®) and its effects on Rhipicephalus sanguineus nymphs fed on rabbits exposed to different doses of this insect growth regulator. Three different doses of fluazuron (20 mg/kg, 40 mg/kg, and 80 mg/kg) were applied on the back of hosts (via “pour on”), while distilled water was applied to the Control group. On the first day of treatment with fluazuron (24 h), hosts were artificially infested with R. sanguineus nymphs. Once fully engorged, nymphs were removed and placed in identified Petri dishes in Biochemical Oxygen Demand (BOD) incubator for 7 days. After this period, engorged nymphs were processed for ultramorphological analysis. The results revealed alterations in the ultramorphology of many chitinous structures (smaller hypostome and chelicerae, less sclerotized scutum, fewer sensilla, fewer pores, absence of grooves, marginal and cervical strips and festoons in the body, even the anal plaque was damaged) that play essential roles for the survivor of ticks and that can compromise the total or partial development of nymphs and emergence of adults after periodic molting. Our findings confirm the efficacy of fluazuron, a more specific and less aggressive chemical to the environment and human health, and that does not induce resistance, in nymphs of the tick R. sanguineus in artificially infested rabbits treated with this arthropod growth regulator (AGR), indicating that it could be used in the control of this stage of the biological cycle of the tick R. sanguineus. Microsc. Res. Tech. 76:1177–1185, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
This study presents the morpho-histological and histochemical characterization of the testes, integument, Malpighian tubules, and midgut of engorged Rhipicephalus sanguineus nymphs on the detachment day, showing the morphological and physiological characteristics to this phase in the life cycle of these individuals. The testis is constituted by germinative cells (only spermatogonia) with large, round-shaped and strongly stained nuclei which are organized into cysts by a thin layer of somatic cells. The integument consists of a cuticle subdivided into epicuticle (lipoprotein) and procuticle (glycoproteic), and a layer of epithelial cells which present glycolipoprotein elements. The procuticle presents two distinct regions: the exocuticle (next to the epicuticle) and the endocuticle (next to the epithelial layer). The Malpighian tubules present a simple epithelium with small flat and/or cubic cells, which form its wall and delimitates a lumen full of lipoprotein material. The midgut consists of an epithelial wall formed by two types of digestive cells, spent cells and empty digest cells, and by generative cells supported by a basal lamina and a thin layer of muscular tissue. This study described the main organs of engorged nymphs of R. sanguineus, to generate information that can help researchers to better understand the biology of these ectoparasites; which is fundamental for the development of compounds that are less aggressive to the environment. In addition, if the immature stages of the ticks are controlled, the number of adult ticks able to cause damages to the animals--and to the man as well--is also under control.  相似文献   

5.
The present study revealed unheard of data about the action of aqueous extracts of neem leaves (Azadirachta indica) on the vitellogenesis of Rhipicephalus sanguineus ticks, proving that these extracts in 10 and 20% concentrations do not have the potential to kill the females; however, in lower concentrations (10%) provokes great morphological alterations in germinative cells such as the emergence of extended cytoplasmic vacuolization areas as well as the fragmentation of the germinal vesicle, even in those oocytes which were in initial stages of development (I-III), showing that neem is a potent agent which acts impeding one of the main metabolic stages of the ticks, i.e., the reproduction. In oocytes in final stages of development (IV-V) azadirachtin (neem's active principle) caused significant reduction in the size and quantity of proteic granules of the yolk and the inversion of their localization where the smaller granules before inside the cell (normal oocyte) were posteriorly observed in the periphery, and the bigger ones in the central region. Thus, the study showed that the alterations found both in the oocytes and in the pedicel cells indicated that azadirachtin acts on the process of tick's reproduction and signalizes that this plant can be used in the future to control ticks with the advantage of not being aggressive to nontarget organism or the environment. Furthermore, data here obtained showed that the most significant efficiency of the aqueous extract of neem is related to the concentration of 10%, proving that higher doses would not be so efficient.  相似文献   

6.
Rhipicephalus sanguineus is a widely distributed tick species that has adapted to the urban environment, and the dog is its main host. This species is also known as a vector and reservoir of diseases caused by bacteria, protozoa, and viruses. Currently, acaricides of synthetic chemical origin have been widely and indiscriminately used, leading to the development of resistance to these products by ticks and causing damage to the environment. Thus, these issues have made it necessary to seek other forms of controlling these ectoparasites. R. sanguineus was artificially infested in host New Zealand White rabbits, which were divided into four treatment groups: control (CG1 and CG2) and treatment (TG1 and TG2) groups. TG1 and TG2 hosts were provided with feed supplemented with esters of ricinoleic acid from castor oil at a concentration of 5 g/kg of feed for 7 and 15 days. Afterward, the ovaries of the female ticks were removed for analysis by transmission electron microscopy. The results showed ultrastructural changes in the somatic and germ cells of ovaries from TG1 and TG2 females, particularly with respect to chorion deposition, a protective membrane of the oocyte, as well as in the transport process of vitellogenic materials via the hemolymph and pedicel cells. Moreover, the mitochondria were less electron-dense and had cristae that were more disorganized than the mitochondria from CG1 and CG2 individuals. Thus, this study demonstrated the action of esters on the ovaries of R. sanguineus, signaling the prospect of a way to control this ectoparasite without affecting nontarget organisms or the environment.  相似文献   

7.
The present study analyzed the effects of different concentrations of the hexane extract of A. oleraceae (HEAO) (Jambú) on the germ cells of semi‐engorged Rhipicephalus microplus female ticks, through a morpho‐histological study, evaluating the effectiveness of the extract in the genesis of the individuals. To perform this analysis, 100 semi‐engorged females were divided into five groups with 20 individuals each: groups I and II, respectively constituted by distilled water control and 50% ethanol + 1% DMSO, and groups III, IV, and V constituted by treatment with HEAO in the concentrations of 12.5, 25.0 and 50.0 mg/mL, respectively. All the ticks were immersed in the different concentrations of the extract or in distilled water for 5 minutes, dried and conditioned in BOD incubator for 7 days. The individuals of the treatment groups revealed the action of this extract showing alterations in the germ cells of the females from the different groups when compared with those from the groups I and II (control groups). These alterations were mainly related to the size and shape of the oocytes; number of yolk granules; presence, number, size and location of vacuoles in the cytoplasm of all the germ cells; and the presence of nuclear alterations in these cells as well. Thus, it was demonstrated that the concentrations of HEAO affected the germ cells of R. microplus ticks. The effects of the extract are similar to those caused by renowned and efficient chemical products used to control these ticks. Microsc. Res. Tech. 79:744–753, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Currently, the necessity of controlling infestation by ticks, especially by Rhipicephalus sanguineus, has led researchers and public health managers around the world to search for new and more efficient control methods. This way, we can highlight neem (Azadirachta indica A. Juss) leaf, bark, and seed extracts, which have been very effective on tick control, and moreover causing less damage to the environment and to the host. This study showed the potential of neem as a control method for R. sanguineus through morphological and morphometric evaluation of the integument and synganglion of females, in semiengorged stage. To attain this, routine techniques of optical microscopy, scanning electron microscopy and morphometry of the cuticle and subcuticle of the integument were applied. Expressive morphological alterations were observed in both organs, presenting a dose‐dependent effect. Integument epithelial cells and nerve cells of the synganglion showed signs of cell vacuolation, dilated intercellular boundaries, and cellular disorganization, alterations not previously reported in studies with neem. In addition, variations in subcuticle thickness were also observed. In general, the effects of neem are multiple, and affect the morphology and physiology of target animals in various ways. The results presented in this work are the first evidence of its effects in the coating and nervous system of ticks, thus allowing an indication of neem aqueous extracts as a potential control method of the brown dog tick and opening new perspectives on acaricide use. Microsc. Res. Tech. 77:989–998, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Several studies searching for methods to control Rhipicephalus sanguineus s.l., (dog tick) infestations have been developed aiming to minimize the damages caused by these ectoparasites to the hosts and the environment, which is harmed by the indiscriminate use of toxic acaricide products. In this scenario, neem oil has been used as a natural alternative against ticks, once this chemical has repellent properties and interferes in the growth regulation of these ectoparasites, inhibiting ecdysis. The present study evaluated the effects of azadirachtin‐enriched neem oil on the integument of semi‐engorged R.sanguineus s.l., females through morphohistological techniques. The results showed the occurrence of significant morphological and histochemical alterations, mainly in the females exposed to higher concentrations, which demonstrates the dose‐dependent action of the chemical. A decrease in the cuticle thickness was observed, as well as a modification in the distribution of the epithelial cells, which displayed pyknotic and fragmented nuclei, and intensely vacuolated cytoplasm, indicating that these cells would be undergoing death processes. These morphological alterations observed in the integument of the females exposed to the azadirachtin‐enriched neem oil encourage the use of this chemical as a strategy to control these ectoparasites.  相似文献   

10.
In Brazil, imidacloprid is a widely used insecticide on agriculture and can harm bees, which are important pollinators. The active ingredient imidacloprid has action on the nervous system of the insects. However, little has been studied about the actions of the insecticide on nontarget organs of insects, such as the Malpighian tubules that make up the excretory and osmoregulatory system. Hence, in this study, we evaluated the effects of chronic exposure to sublethal doses of imidacloprid in Malpighian tubules of Africanized Apis mellifera. In the tubules of treated bees, we found an increase in the number of cells with picnotic nuclei, the lost of part of the cell into the lumen, and a homogenization of coloring cytoplasm. Furthermore, we observed the presence of cytoplasmic vacuolization. We confirmed the increased occurrence of picnotic nuclei by using the Feulgan reaction, which showed the chromatin compaction was more intense in the tubules of bees exposed to the insecticide. We observed an intensification of the staining of the nucleus with Xylidine Ponceau, further verifying the cytoplasmic negative regions that may indicate autophagic activity. Additionally, immunocytochemistry experiments showed TUNEL positive nuclei in exposed bees, implicating increased cell apoptosis after chronic imidacloprid exposure. In conclusion, our results indicate that very low concentrations of imidacloprid lead to cytotoxic activity in the Malpighian tubules of exposed bees at all tested times for exposure and imply that this insecticide can alter honey bee physiology. Microsc. Res. Tech. 76:552–558, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The mud crab, Scylla olivacea, is one of the most economically valuable marine species in Southeast Asian countries. However, commercial cultivation is disadvantaged by reduced reproductive capacity in captivity. Therefore, an understanding of the general and detailed anatomy of central nervous system (CNS) is required before investigating the distribution and functions of neurotransmitters, neurohormones, and other biomolecules, involved with reproduction. We found that the anatomical structure of the brain is similar to other crabs. However, the ventral nerve cord (VNC) is unlike other caridian and dendrobrachiate decapods, as the subesophageal (SEG), thoracic and abdominal ganglia are fused, due to the reduction of abdominal segments and the tail. Neurons in clusters within the CNS varied in sizes, and we found that there were five distinct size classes (i.e., very small globuli, small, medium, large, and giant). Clusters in the brain and SEG contained mainly very small globuli and small‐sized neurons, whereas, the VNC contained small‐, medium‐, large‐, and giant‐sized neurons. We postulate that the different sized neurons are involved in different functions. Microsc. Res. Tech. 77:189–200, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号