首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The change in the quality attributes (physical, microbial, and chemical) of oysters (Crassostrea virginica) after high hydrostatic pressure (HHP) treatment at 300 MPa at room temperature (RT, 25 °C) 300, 450, and 500 MPa at 0 °C for 2 min and control oysters without treatment were evaluated over 3 wk. The texture and tissue yield percentages of oysters HHP treated at 300 MPa, RT increased significantly (P < 0.05) compared to control. Aerobic and psychrotrophic bacteria in control oysters reached the spoilage point of 7 log CFU/g after 15 d. Coliform counts (log MPN/g) were low during storage with total and fecal coliforms less than 3.5 and 1.0. High pressure treated oysters at 500 MPa at 0 °C were significantly higher (P < 0.05) than oysters HHP treated at 300 MPa at 0 °C in lipid oxidation values. The highest pressure (500 MPa) treatment in this study, significantly (P < 0.05) decreased unsaturated fatty acid percentage compared to control. The glycogen content of control oysters at 3 wk was significantly higher (P < 0.05) when compared to HHP treated oysters [300 MPa, (RT); 450 MPa (0 °C); and 500 MPa (0 °C)]. HHP treatments of oysters were not significantly different in pH, percent salt extractable protein (SEP), and total lipid values compared to control. Based on our results, HHP prolongs the physical, microbial, and chemical quality of oysters.  相似文献   

2.
The influence of high hydrostatic pressure (HHP) on the emulsifying properties of whey protein isolate (WPI) and chitosan mixtures in sunflower oil-in-water emulsion has been investigated at pH 4.0. WPI and chitosan mixtures at various ratios were treated at pressure levels in the range of 0–600 MPa for 10–30 min. The emulsifying properties of the mixtures were analyzed by dynamic light scattering and a centrifugal sedimentation technique. HHP treatments of the mixtures resulted in improvement in their emulsifying properties, with the emulsions formed showing more than threefold reductions in droplet size, much more homogeneous droplet distribution, and better creaming stability. The higher the treatment pressure was, the smaller the droplet size and more stable the emulsions were, with those prepared with the mixtures treated at 600 MPa showing no noticeable creaming after 30 days of storage at ambient temperature. The ratio of WPI to chitosan and treatment time also affected the emulsification stability of the mixtures, with a WPI to chitosan ratio of 1:4 (w/w) and treatment time of 20 min found to be the optimum conditions. These results showed that HHP could be a useful method for enhancing the emulsifying properties of protein–polysaccharide mixtures.  相似文献   

3.
This study investigated the effect of single‐ and two‐cycle high hydrostatic pressure (HHP) treatments on water properties, physicochemical, and microbial qualities of squids (Todarodes pacificus) during 4 °C storage for up to 10 d. Single‐cycle treatments were applied at 200, 400, or 600 MPa for 20 min (S‐200, S‐400, and S‐600), and two‐cycle treatments consisted of two 10 min cycles at 200, 400, or 600 MPa, respectively (T‐200, T‐400, and T‐600). HHP‐treated samples had higher (P < 0.05) content of P2b (immobilized water) and P21 (myofibril water), but lower P22 (free water) than those of control. The single‐ and two‐cycle HHP treatments at the same pressure level caused no significant difference in water state of squids. The two‐cycle HHP treatment was more effective in controlling total volatile basic nitrogen, pH, and total plate counts (TPC) of squids during storage, in which TPC of S‐600 and T‐600 was 2.9 and 1.8 log CFU/g at 10 d, respectively, compared with 7.5 log CFU/g in control. HHP treatments delayed browning discoloration of the squids during storage, and the higher pressure level and two‐cycle HHP were more effective. Water properties highly corresponded with color and texture indices of squids. This study demonstrated that the two‐cycle HHP treatment was more effective in controlling microbial growth and quality deterioration while having similar impact on the physicochemical and water properties of squids in comparison with the single‐cycle treatment, thus more desirable for extending shelf‐life of fresh squids.  相似文献   

4.
The influence of high hydrostatic pressure (HHP) treatment on the physicochemical and emulsifying properties of sweet potato protein (SPP) at various concentrations, e.g. 2%, 4% and 6% (w/v, SPP‐2, SPP‐4 and SPP‐6), was investigated. Significant differences in hydrophobicity, enthalpy of denaturation and solubility were observed (< 0.05). Emulsifying activity indexes (EAI) of SPP‐2 and SPP‐6 increased at 400 MPa, whereas EAI of all SPP significantly decreased at 600 MPa (< 0.05). Emulsion stability (ESI) was significantly decreased for SPP‐2 and SPP‐6, while increase in ESI was observed for SPP‐4 above 200 MPa (< 0.05). SPP‐2 emulsions showed sharp decrease in apparent viscosity with pressure increase, while pseudo plastic flow behaviour was not changed for all of emulsions. Sporamins A and B were well‐adsorbed in pressurised emulsion without displacement. These results suggest that HHP treatment could be used to modify the physicochemical and emulsifying properties of SPP.  相似文献   

5.
The purpose of the study was to determine the effect of high‐hydrostatic pressure (HHP) on inactivation of human norovirus (HuNoV) in oysters and to evaluate organoleptic characteristics of oysters treated at pressure levels required for HuNoV inactivation. Genogroup I.1 (GI.1) or Genogroup II.4 (GII.4) HuNoV was inoculated into oysters and treated at 300 to 600 MPa at 25 and 0 °C for 2 min. After HHP, viral particles were extracted by porcine gastric mucin‐conjugated magnetic beads (PGM‐MBs) and viral RNA was quantified by real‐time RT‐PCR. Lower initial temperature (0 °C) significantly enhanced HHP inactivation of HuNoV compared to ambient temperature (25 °C; P < 0.05). HHP at 350 and 500 MPa at 0 °C could achieve more than 4 log10 reduction of GII.4 and GI.1 HuNoV in oysters, respectively. HHP treatments did not significantly change color or texture of oyster tissue. A 1‐ to 5‐scale hedonic sensory evaluation on appearance, aroma, color, and overall acceptability showed that pressure‐treated oysters received significantly higher quality scores than the untreated control (P < 0.05). Elevated pressure levels at 450 and 500 MPa did not significantly affect scores compared to 300 MPa at 0 °C, indicating increasing pressure level did not affect sensory acceptability of oysters. Oysters treated at 0 °C had slightly lower acceptability than the group treated at room temperature on day 1 (P < 0.05), but after 1 wk storage, no significant difference in sensory attributes and consumer desirability was observed (P > 0.05).  相似文献   

6.
The effect of high hydrostatic pressure (HHP) treatment on the structure, physicochemical and functional properties of cumin protein isolate (CPI) was investigated. More aggregates, pores, irregular conformations and bigger particle size were observed for HHP-treated CPI. HHP resulted in an increase in α-helix, a decrease in β-strand and fluorescence intensity of CPI. Surface hydrophobicity (Ho) of CPI significantly increased after HHP treatment, from 343.35 for native CPI to 906.22 at 600 MPa (P < 0.05). HHP treatment at 200 MPa reduced zeta-potential and solubility of CPI, while had little effect at 400 and 600 MPa. Emulsifying activity and stability of CPI decreased after HHP treatment, of which droplet size of emulsions significantly increased (P < 0.05). HHP-treated CPI could form heat-induced gelation at lower temperature (68.5 °C) and improved storage modulus (G′) comparing to native one (80.6 °C), suggesting that CPI might be potential protein resources as gelation substitute in food system.  相似文献   

7.
BACKGROUND: The conventional method of processing ginseng (Panax ginseng) roots into red ginseng involves mainly heating and drying processes. In the present study, this method was modified by using high hydrostatic pressure (HHP) to improve the physicochemical characteristics of red ginseng. RESULTS: The HHP process (600 MPa for 1 min) significantly improved the histological properties of red ginseng by increasing cellular disruption and release of cell contents. The total reducing sugar content was significantly (P < 0.05) higher (increased from 10.67 to 15.25 mg g?1) in red ginseng processed at 600 MPa for 1 min. Similarly, the total free amino acid content also increased significantly (from 2.81 to 7.77 mg g?1). The HHP process resulted in superior and more even colouration and gave an attractive visual appearance to red ginseng. The optical density at 420 nm and Hunter's colour a value (redness) of extracts prepared from red ginseng increased significantly (P < 0.05) with the application of HHP. CONCLUSION: HHP‐processed red ginseng has significantly higher reducing sugar and free amino acid contents together with a more compact cell structure and superior visual quality (brighter red colour). Hence the application of HHP in red ginseng processing can result in ginseng products of improved quality compared with those obtained by the conventional method. Copyright © 2012 Society of Chemical Industry  相似文献   

8.
Whey protein concentrate (WPC) has many applications in the food industry. Previous research demonstrated that treatment of whey proteins with high hydrostatic pressure (HHP) can enhance solubility and foaming properties of whey proteins. The objective of this study was to use HHP to improve functional properties of fresh WPC, compared with functional properties of reconstituted commercial whey protein concentrate 35 (WPC 35) powder. Fluid whey was ultrafiltered to concentrate proteins and reconstituted to equivalent total solids (8.23%) as reconstituted commercial WPC 35 powder. Solutions of WPC were treated with 300 and 400 MPa (0- and 15-min holding time) and 600 MPa (0-min holding time) pressure. After HHP, the solubility of the WPC was determined at both pH 4.6 and 7.0 using UDY and BioRad protein assay methods. Overrun and foam stability were determined after protein dispersions were whipped for 15 min. The protein solubility was greater at pH 7.0 than at pH 4.6, but there were no significant differences at different HHP treatment conditions. The maintenance of protein solubility after HHP indicates that HHP-treated WPC might be appropriate for applications to food systems. Untreated WPC exhibited the smallest overrun percentage, whereas the largest percentage for overrun and foam stability was obtained for WPC treated at 300 MPa for 15 min. Additionally, HHP-WPC treated at 300 MPa for 15 min acquired larger overrun than commercial WPC 35. The HHP treatment of 300 MPa for 0 min did not improve foam stability of WPC. However, WPC treated at 300 or 400 MPa for 15 min and 600 MPa for 0 min exhibited significantly greater foam stability than commercial WPC 35. The HHP treatment was beneficial to enhance overrun and foam stability of WPC, showing promise for ice cream and whipping cream applications.  相似文献   

9.
张园园  刘振民  郑远荣 《食品与机械》2023,39(8):110-115,174
目的:确定超高压(HHP)处理奶酪的最适条件。方法:以自制奶油奶酪为研究对象,探究超高压处理压力对奶油奶酪质构、风味及货架期的影响。通过质构仪、固相微萃取—气相色谱质谱联用仪及菌落计数法分别对奶酪的质构、风味物质、微生物等进行测定。结果:经HHP处理后,奶油奶酪的硬度、黏性、耐咀性呈降低趋势;当处理压力为300 MPa时,奶酪的弹性达到最高,比未处理奶酪增加了14.0%(P<0.05);当处理压力≥400 MPa时,奶酪挥发性物质的含量和种类明显降低,且200,300 MPa处理奶酪与未处理奶酪均位于第一主成分区域;HHP处理人工染菌后的奶油奶酪,其菌落数显著下降(P<0.05),且处理压力越大,杀菌效果越好;当HHP处理压力≥300 MPa时,奶酪的货架期从7 d延长至21 d。结论:经HHP处理的奶油奶酪有良好的质地和风味,且其货架期有效延长。  相似文献   

10.
The effects of high-pressure (HP) treatment at 100–500 MPa on some physicochemical and functional properties of egg yolk (EY) were investigated. Protein solubility, viscosity, surface hydrophobicity (H0), free sulfhydryl (SH) content, differential scanning calorimetry characteristics, emulsifying activities and emulsifying stability were evaluated. HP-treatment resulted in protein aggregation, as evidenced by gradual decrease in protein solubility and significantly increased in viscosity. HP-treatment at 100–500 MPa induced a gradual decrease in H0 and SH content, possibly due to protein unfolding and subsequent aggregation/re-association of unfolded proteins. Emulsifying activity index (EAI) was slightly decreased between 100 and 300 MPa and when the pressure is above 400 MPa, EAI was significantly (P < 0.05) decreased relative to the untreated EY. HP-treatment at 100 MPa significantly (P < 0.05) increased the ESI values of EY, while a significant (P < 0.05) decrease was observed when the pressure was above 200 MPa. It was also investigated that there are significant correlations between physicochemical properties of EY, and the differences in the modification of EY protein by HP treatment at different pressure levels may be attributed to the differences in aggregation and unfolding/refolding extents of proteins.  相似文献   

11.
Oats do not contain gluten protein, and oat dough structure is formed mainly through the hydrogen bonding of starch and β-glucan. As a non-thermal processing technology, high hydrostatic pressure (HHP) is mainly used to modify starch and protein in food processing. This study investigated the effects of HHP treatment on the morphological, structural, thermal, pasting and in vitro digestion properties of oat starch/β-glucan mixtures. Results showed that β-glucan interconnects with amylose through hydrogen bonding and has a protective effect on the crystalline region of oat starch. Effect of HHP treatment on the crystal structure of mixture system goes through crystal structure perfection stage, crystallisation disintegration and gelatinisation stage. After 300–400 MPa treatment, the changes in particle surface were not obvious, the phase transition temperature, the ΔHgel and the PT of mixtures increased, while the particle size, viscosity and BD values decreased. After 500–600 MPa treatment, mixtures were completely gelatinised, most of the particles swelled and deformed, the particle size increased significantly. The principal component analysis results show that the complexes were distributed in the same region with similar properties after the 300–400 MPa and 500–600 MPa treatments, respectively.  相似文献   

12.
The protein secondary structure modifications and digestibility of red abalone muscle subjected to high hydrostatic pressure (HHP) treatments (200, 300, 400, and 500 MPa for 5 min) were evaluated. The protein structure was analysed by Fourier-Transformed Infrared spectroscopy. Protein digestibility was evaluated based on the degree of hydrolysis (DH) and peptide size distributions under in vitro gastrointestinal conditions. The intermolecular β-sheet structure was disrupted at 200 MPa, compensated by the formation of the intramolecular β-sheet. At 300 and 400 MPa, the β-sheet structure can fold on itself from the interactions that stabilize the protein structure. The 310-helix structure was significantly looser at 300 MPa. Structural modifications were accompanied by β-turn formation at 300, 400, and 500 MPa. In vitro gastrointestinal digestion is improved by HHP independently of pressure level. The results suggest that high pressure improve the DH of red abalone as a consequence of β-sheet and β-turn conformations changes.Industrial relevanceThe seafood industry uses high hydrostatic pressure (HHP) technology to reduce undesirable sensory changes and preserve the functional and nutritional properties of compounds. The HHP experiments contributed to unravel the impact of the different level pressure on digestibility. HHP treatment can change the secondary structures of proteins and improve the protein digestibility as function the pressure level. The results of this study provide valuable information for the potential application of HHP on the development of red abalone with high-nutritional value.  相似文献   

13.
In this study, we aimed to examine the effect of phosvitin on lipid and protein oxidation of raw and cooked ground beef treated with high hydrostatic pressure (HHP). Ground beef patty with 0, 500, or 1000 mg phosvitin/kg meat was treated with HHP at 0.1, 300, or 600 MPa. Half of the patties were used in a raw meat analysis, and the other half were used in a cooked meat analysis. Phosvitin and HHP treatment at 300 MPa synergistically reduced microbial growth, and HHP treatment at 600 MPa reduced microbial counts to undetectable levels (< 1 log CFU/g) throughout the length of the study in all samples. Phosvitin delayed lipid and protein oxidation in HHP-treated cooked and raw ground beef, respectively. However, phosvitin had no effect on the color changes of raw ground beef attributable to HHP. The results indicated that phosvitin could enhance the stability of lipids and proteins but not color changes of raw ground beef caused by HHP.  相似文献   

14.
BACKGROUND: Changes in instrumental color parameters, chlorophyll a and b, activity of chlorophyllase, Mg‐dechelatase, peroxidase and polyphenol oxidase, total phenolic compounds and pH of spinach purée were assessed after high hydrostatic pressure (HHP) (200, 400 and 600 MPa for 5, 15 and 25 min) treatments at room temperature. RESULTS: HHP treatments induced a better retention of visual green color (?a* and L* values) and chlorophyll contents of spinach purée. As for chlorophyll degradation‐related enzymes, the results indicated that chlorophyllase activity decreased at all pressures; however, Mg‐dechelatase activity was dramatically activated after HHP treatment at 400 and 600 MPa. Peroxidase exhibited higher resistance to HHP; however, polyphenol oxidase, which is responsible for enzymatic browning, was suppressed progressively with increase in pressure level from 200 to 600 MPa. In addition, the pH value of HHP‐treated spinach purée was increased to be close to neutral pH, which could effectively inhibit chlorophyll degradation. No significant differences (P > 0.05) were found after extending the treatment times at the same level of pressure. CONCLUSION: HHP treatments effectively prevent chlorophyll degradation and enzymatic browning in spinach purée and retain a better original fresh green color of spinach compared with conventional thermal treatment. Copyright © 2012 Society of Chemical Industry  相似文献   

15.
The aim of this work was to evaluate the characterization of physicochemical properties and IgE‐binding of soybean proteins derived from the high hydrostatic pressure (HHP) treated seeds. Soybean seeds were treated by HHP at different pressures, and changes in the physicochemical properties of soybean proteins were characterized by proteins solubility, free sulfhydryl (SH) content, surface hydrophobicity, and secondary structures. Sodium dodecyl sulphate‐polyacrylamide gel electrophoresis (SDS‐PAGE) and enzyme‐linked immunoabsorbent assay (ELISA) were used to define the proteins patterns and IgE‐binding ability. The results showed that HHP treatment in the ranges of 0 to 500 MPa led to a slight but gradual decline in free SH content. The solubility and hydrophobicity of soybean proteins increased sharply from 100 to 200 MPa, and gradually decreased upon the further increase of pressure. The α‐helix and β‐sheets contents of soybean proteins decreased, while the random coil content increased. The SDS‐PAGE showed that HHP treatment of 100 to 200 MPa could dissociate the proteins, breaking the aggregates into smaller units, while the treatment ranging from 300 to 500 MPa could induce the proteins aggregation into larger units. Moreover, the ELISA revealed that the IgE‐binding of soybean proteins after HHP treatment at 200 MPa decreased 61.7% compared to the untreated group. Our findings suggested that HHP processing could not only modify the physicochemical properties of soybean proteins, but also significantly reduce its IgE‐binding at an appropriate pressure level.  相似文献   

16.
Effects of incorporation of native and preheated defatted walnut on the physicochemical, emulsifying and rheological properties of meat batters, as affected by final heating temperature were investigated. Replacing meat protein with native defatted walnut in meat product formulations reduced (P < 0.05) gel strength and emulsifying properties and hence the firmness and stability of meat batters but enhanced water- and fat-binding properties and hence the yield of a processed meat product. However, incorporation of preheated defatted walnut, in addition to improving (P < 0.05) water- and fat-binding properties during thermal treatment, improved the gelling ability of myofibrillar proteins, probably because the preheating of the defatted walnut promoted interactions between walnut proteins and muscle proteins.  相似文献   

17.
The objective of this study was to assess the effect of High Pressure Homogenisation (HPH) compared with High Hydrostatic Pressure (HHP) on the microbiological quality of raw apple juice during storage at ideal (4 °C) and abuse (12 °C) temperatures. In the case of HPH, only low numbers of micro-organisms were detected after treatment at 300 MPa (typically between 2 and 3 log.ml−1). These were identified as Streptomyces spp., and numbers did not increase during storage of the juice for 35 days, irrespective of storage temperature. In the case of HHP, the total aerobic counts were also reduced significantly (p < 0.05) after treatment for 1 min at 500 and 600 MPa and the numbers did not increase significantly during storage at 4 °C. However, during storage at 12 °C the counts did increase significantly (p < 0.05) and by day 14 counts at 500 MPa were not significantly different from the control juice. This confirms that good temperature control is important if the full benefits of HHP treatment are to be realised.Frateuria aurantia dominated the microbiota of the HHP apple juice stored at 12 °C along with low levels of Bacillus and Streptomyces spp.The HPH and HHP juices both turned brown during storage indicating that neither treatment was sufficient to inactivate polyphenol oxidase. The enzyme is known to be pressure resistant and this discolouration was controlled by a heat treatment (70 °C for 1 min) used in commercial practice and given prior to HP treatment.  相似文献   

18.
The effect of high hydrostatic pressure (HHP, 100–400 MPa) for 20 min at 25 °C to sweet potato flour (SPF) on dough properties and characteristics of sweet potato‐wheat bread was investigated. The particle size of SPF after HHP was decreased significantly. The obvious rupture was observed in granules of SPF after HHP at 300 and 400 MPa by scanning electron microscopy (SEM). After HHP, significant differences on endothermic peak temperatures (TP) of SPF were observed by differential scanning calorimetric (DSC), of which the enthalpy change (ΔH) had a slight increase, expect that at 200 MPa. Gas retention of dough with SPF after HHP increased markedly from 1199 (0.1 MPa) to 1246 ml (100 MPa). Specific loaf volume of bread with SPF at 400 MPa was increased significantly, while the hardness and chewiness were reduced. Thus, SPF treated with HHP at 400 MPa could be potentially used in wheat bread production.  相似文献   

19.
Surface hydrophobicity, solubility, gelation and emulsifying properties of high hydrostatic pressure (HHP)‐treated whey protein were evaluated. HHP treatment of whey protein buffer or salt solutions were performed at 690 MPa and initial ambient temperature for 5, 10, 20 or 30 min. Untreated whey protein was used as a control. The surface hydrophobicity of whey protein in 0.1 M phosphate buffers treated at pH 7.0 increased with an increase in HHP treatment time from 10 to 30 min. HHP treatments of whey protein in salt solutions at pH 7.0 for 5, 10, 20 or 30 min decreased the solubility of whey proteins. A significant correlation was observed between the surface hydrophobicity and solubility of untreated and HHP‐treated whey protein with r = ?0.946. Hardness of HHP‐induced 20, 25 or 30% whey protein gels increased with an increase in HHP treatment time from 5 to 30 min. An increase in the hardness of whey protein gels was observed as whey protein concentration increased. Whey proteins treated in phosphate buffer at pH 5.8 and 690 MPa for 5 min exhibited increased emulsifying activity. Whey proteins treated in phosphate buffer at pH 7.0 and 690 MPa for 10, 20 or 30 min exhibited decreased emulsifying activity. HHP‐treated whey proteins in phosphate buffer at pH 5.8 or 7.0 contributed to an increase in emulsion stability of model oil‐in‐water emulsions. This study demonstrates that HHP treatment of whey protein in phosphate buffer or salt solutions leads to whey protein unfolding observed as increased surface hydrophobicity. Whey proteins treated in phosphate buffers at pH 5.8 and 690 MPa for 5 min may potentially be used to enhance emulsion stability in foods such as salad dressings, sausage and processed cheese.  相似文献   

20.
The combined effects of limited enzymatic hydrolysis and high hydrostatic pressure (HHP) treatment on the structural and emulsifying properties of rice proteins (RPs) were investigated. Alcalase exhibited higher hydrolysis efficiency than papain. Through alcalase-catalyzed hydrolysis and HHP treatment, emulsifying activity index (EAI) and emulsifying stability index (ESI) of RPs were improved from 14.58 m2/g and 22.54 min to 29.93 m2/g and 43.35 min, respectively. The content of random coil in RPs increased, while the content of α-helix decreased. HHP at 300 MPa led to the highest surface hydrophobicity (H0) and fluorescence intensity. The enzymatic hydrolysis-HHP (300 MPa) modified RPs could form an oil-in-water emulsion with a d4,3 of 0.347 nm, ζ-potential of −36.4 mV, and creaming index of 10.5% after 7 days storage. This work sheds light on employing limited enzymatic hydrolysis and HHP to modify RPs for better application in emulsion-based food products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号