首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— An indium gallium zinc oxide (IGZO) film with an amorphous phase was deposited and had a very flat morphology with a RMS value of 0.35 nm. IGZO TFTs were fabricated on a glass substrate by conventional photolithography and wet‐etching processes. IGZO TFTs demonstrated a high mobility of 124 cm2/V‐sec, a high on/off ratio of over 108, a desirable threshold voltage of 0.7 V, and a sub‐threshold swing of 0.43 V/decade. High mobility partially resulted from the fringing‐electric‐field effect that leads to an additional current flow beyond the device edges. Therefore, considering our device geometry, the actual mobility was about 100 cm2/V‐sec, and had a very low dependence on the variation of W/L (channel width and length) and thickness of the active layer. IGZO TFTs were also fabricated on a flexible metal substrate for a conformable display application. TFT devices showed an actual mobility of 72 cm2/V‐sec, a high on/off ratio of ~107, and a sub‐threshold swing of 0.36 V/decade. There was no significant difference before, during, or after bending. Moreover, an IGZO TFT array was fabricated and a top‐emitting OLED device was successfully driven by it. Therefore, the oxide TFT could be a promising candidate as a backplane for OLED devices.  相似文献   

2.
Abstract— A flexible color LCD panel driven by organic TFTs (OTFTs) was successfully demonstrated. A pentacene OTFT with an anodized Ta2O5 gate insulator, which can be operated at low voltage, was developed. In order to improve the electrical performance of the OTFT, the gate insulator was surface treated by processes such as O2 plasma, UV light irradiation, and hexamethyldisilane treatments. The fabricated OTFT exhibited a mobility of 0.3 cm2/V‐sec and a current on/off ratio of 107 with a low operating drain voltage of ?5 V. A fast‐response‐time flexible ferroelectric LCD, which contains polymer networks and walls, was integrated with the OTFTs by using a lamination and a printing technique. As a result, color images were achieved on the fabricated panel by using a field‐sequential‐color method at a low driving voltage of less than 15 Vpp.  相似文献   

3.
Abstract— A photodetector using a silicon‐nanocrystal layer sandwiched between two electrodes is proposed and demonstrated on a glass substrate fabricated by low‐temperature poly‐silicon (LTPS) technology. Through post excimer‐laser annealing (ELA) of silicon‐rich oxide films, silicon nanocrystals formed between the bottom metal and top indium thin oxide (ITO) layers exhibit good uniformity, reliable optical response, and tunable absorption spectrum. Due to the quantum confinement effect leading to enhanced phonon‐assisted excitation, these silicon nanocrystals, less than 10 nm in diameter, promote electron‐hole‐pair generation in the photo‐sensing region as a result resembling a direct‐gap transition. The desired optical absorption spectrum can be obtained by determining the thickness and silicon concentration of the deposited silicon‐rich oxide films as well as the power of post laser annealing. In addition to obtaining a photosensitivity comparable to that of the p‐i‐n photodiode currently used in LTPS technology, the silicon‐nanocrystal‐based photosensor provides an effective backlight shielding by the bottom electrode made of molybdenum (Mo). Having a higher temperature tolerance for both the dark current and optical responsibility and maximizing the photosensing area in a pixel circuit by adopting a stack structure, this novel photosensor can be a promising candidate for realizing an optical touch function on a LTPS panel.  相似文献   

4.
Abstract— An organic thin‐film‐transistor (OTFT) backplane has been fabricated by using a solution‐processed organic semiconductor (OSC) and organic insulators. The OSC, a peri‐xanthenoxanthene derivative, provides a mobility of 0.5 cm2/V‐sec. These organic materials enhance the mechanical flexibility of the backplane. The developed backplane successfully drives a 13.3‐in. flexible UXGA electrophoretic display that can operate when bent at a radius of 5 mm.  相似文献   

5.
Abstract— A high‐mobility and high‐reliability oxide thin‐film transistor (TFT) that uses In‐Sn‐Zn‐O (ITZO) as a channel material has been developed. The mobility was 30.9 cm2/V‐sec and the threshold voltage shift after 20,000 sec of a bias‐temperature‐stress (BTS) test (with a stress condition of Vg = 15 V, Vd = 15 V, and T = 50°C) was smaller than 0.1 V. In addition, a method of obtaining a stable enhancement‐type TFT, which realizes circuit integration for active‐matrix organic light‐emitting diode (AMOLED) displays has been developed.  相似文献   

6.
We developed a novel vertically integrated, double stack oxide thin‐film transistor (TFT) backplane for high‐resolution organic light‐emitting diode (OLED) displays. The first TFT layer is bulk‐accumulation mode, and the second TFT layer is a single gate with back‐channel etched structure. The extracted mobilities and threshold voltages are higher than 10 cm2/Vs and 0 ~ 1 V, respectively. Both TFTs are found to be extremely stable under the bias and temperature stress. The gate driver with width of 530 μm and a pitch of 18.6 μm was developed, exhibiting well shifted signal up to the last stage of 900 stages without output degradation, which could be used for 1360 ppi TFT backplane.  相似文献   

7.
Abstract— A 14.1‐in. AMOLED display using nanocrystalline silicon (nc‐Si) TFTs has been developed. Nanocrystalline silicon was deposited using conventional 13.56‐MHz plasma‐enhanced chemical vapor deposition (PECVD). Detailed thin‐film characterization of nc‐Si films was followed by development of nc‐Si TFTs, which demonstrate a field‐effect mobility of about 0.6–1.0 cm2/V‐sec. The nc‐Si TFTs show no significant shift in threshold voltage when over 700 hours of constant current stress is applied, indicating a stable TFT backplane. The nc‐Si TFTs were successfully integrated into a 14.1‐in. AMOLED display. The display shows no significant current decrease in the driving TFT of the 2T‐1cap circuit because the TFTs are highly stable. In addition to the improved lifetime of AMOLED displays, the development of nc‐Si TFTs using a conventional 13.56‐MHz PECVD system offers considerable cost advantages over other laser and non‐laser polysilicon‐TFT technologies for large‐sized AMOLEDs.  相似文献   

8.
We have developed stable and high performance etch‐stopper amorphous indium–gallium–zinc oxide thin‐film transistor (TFT) by using split active oxide semiconductor. The amorphous indium–gallium–zinc oxide TFTs exhibit the mobility as high as over 70 cm2/Vs and the stable operation under positive bias temperature stress. In this work, we demonstrated a 4‐in. transparent active‐matrix organic light‐emitting diode display using oxide TFT backplane with split active layer, where the gate driver is integrated.  相似文献   

9.
Abstract— Amorphous‐oxide thin‐film‐transistor (TFT) arrays have been developed as TFT backplanes for large‐sized active‐matrix organic light‐emitting‐diode (AMOLED) displays. An amorphous‐IGZO (indium gallium zinc oxide) bottom‐gate TFT with an etch‐stop layer (ESL) delivered excel lent electrical performance with a field‐effect mobility of 21 cm2/V‐sec, an on/off ratio of >108, and a subthreshold slope (SS) of 0.29 V/dec. Also, a new pixel circuit for AMOLED displays based on amorphous‐oxide semiconductor TFTs is proposed. The circuit consists of four switching TFTs and one driving TFT. The circuit simulation results showed that the new pixel circuit has better performance than conventional threshold‐voltage (VTH) compensation pixel circuits, especially in the negative state. A full‐color 19‐in. AMOLED display with the new pixel circuit was fabricated, and the pixel circuit operation was verified in a 19‐in. AMOLED display. The AMOLED display with a‐IGZO TFT array is promising for large‐sized TV because a‐IGZO TFTs can provide a large‐sized backplane with excellent uniformity and device reliability.  相似文献   

10.
In this letter, solution‐processed flexible zinc‐tin oxide (Z0.35T0.65O1.7) thin‐film transistors with electrochemically oxidized gate insulators (AlOx:Nd) fabricated on ultra‐thin (30 µm) polyimide substrates are presented. The AlOx:Nd insulators exhibited wonderful stability under bending and excellent insulating properties with low leakage current, high dielectric constant, and high breakdown field. The device exhibited a mobility of 3.9 cm2/V · s after annealing at 300 °C. In addition, the flexible device was able to maintain the electricity performance under various degrees of bending, which was attributed to the ultra‐thin polyimide substrate.  相似文献   

11.
Abstract— A new digital ambient‐light sensor system has been designed and fabricated on a glass substrate using a conventional low‐temperature polycrystalline‐silicon (LTPS) technology. In the proposed system, analog‐to‐digital conversion (ADC) is performed in the time domain instead of the voltage domain and is combined with a light‐detection process. The proposed system employs self‐reset architecture and requires only one comparator for n‐bit digital output. Because the complex analog circuitry is eliminated from the system, it can be readily integrated on the glass substrate.  相似文献   

12.
Abstract— A novel pixel circuit for electrically stable AMOLEDs with an a‐Si:H TFT backplane and top‐anode organic light‐emitting diode is reported. The proposed pixel circuit is composed of five a‐Si:H TFTs, and it does not require any complicated drive ICs. The OLED current compensation for drive TFT threshold voltage variation has been verified using SPICE simulations.  相似文献   

13.
To analyze the hysteresis phenomenon in p‐channel low‐temperature polycrystalline‐silicon thin‐film transistors (LTPS TFTs), the direct correlation between the hysteresis and the interface (Nit) and the grain‐boundary trap density (Ntrap) has been investigated. To fabricate LTPS TFTs with different electrical properties and trap types, the thickness of a‐Si was varied from 30 to 80 nm and crystallized by the excimer‐laser‐anneal (ELA) method. The interface trap density is extracted from the subthreshold slope (SS) and low‐high‐frequency C‐V analysis, while the grain‐boundary trap density is extracted by the Levinson and Proano method. The LTPS TFTs with smaller hysteresis exhibited a lower trap density. From the correlation between extracted parameters, the hysteresis seems to be more dependent on Nit and decreases when the film thickness increases to 80 nm while the Ntrap is almost the same in all devices.  相似文献   

14.
Abstract— An improved AMOLED with an a‐Si TFT backplane based on a unique structure is reported. The new structure is refered to as a dual‐plate OLED display (DOD). While a top‐emission OLED array is directly fabricated on a TFT backplane, the DOD consists of an upper OLED substrate and a lower TFT substrate, which are independently fabricated. Because the OLED substrate, which is fabricated through the process flow of bottom emission, is attached to the TFT substrate, the light is emitted in the opposite direction to the TFT backplane. The DOD enables the design of large‐sized TFTs and a complicated pixel circuit. It can also not only achieve higher uniformity in luminance in large‐sized displays due to the low electrical resistance of the common electrode, but also wider viewing angles.  相似文献   

15.
We present a qHD (960 × 540 with three sub‐pixels) top‐emitting active‐matrix organic light‐emitting diode display with a 340‐ppi resolution using a self‐aligned IGZO thin‐film transistor backplane on polyimide foil with a humidity barrier. The back plane process flow is based on a seven‐layer photolithography process with a CD = 4 μm. We implement a 2T1C pixel engine and use a commercial source driver IC made for low‐temperature polycrystalline silicon. By using an IGZO thin‐film transistor and leveraging the extremely low off current, we can switch off the power to the source and gate driver while maintaining the image unchanged for several minutes. We demonstrate that, depending on the image content, low‐refresh operation yields reduction in power consumption of up to 50% compared with normal (continuous) operation. We show that with the further increase in resolution, the power saving through state retention will be even more significant.  相似文献   

16.
Abstract— A current‐mode ambient‐light sensing circuit, which is composed of p‐intrinsic‐metal (p‐i‐m) diodes and p‐type low‐temperature polycrystalline‐silicon (LTPS) thin‐film transistors (TFTs) for autobrightness control of display panels. The proposed sensing circuit exhibits a wide dynamic range of 56 dB, while the output signal range is 1.8 times wider than that of a previously reported sensing circuit.  相似文献   

17.
Abstract— An LTPS TFT‐LCD with an in‐cell capacitive‐type touch sensor has been proposed and prototyped. The embedded sensor in the pixel was designed to amplify the voltage change caused by capacitive coupling between the detection electrode and conductive object (user's finger). No touch force is needed for sensor actuation and no extra electrical connection for the counter‐substrate is needed. The validity of the observed voltage difference of the sensor output on the TFT substrate was examined. The proposed architecture is considered to be applicable to larger LCDs for various applications such as smartphones, automotive navigation systems, and mobile internet devices.  相似文献   

18.
Abstract— A 2.3‐in.‐diagonal QVGA‐formatted “System‐On‐Glass” display has been developed by using low‐temperature poly‐Si TFT‐LCD technology. This display fully integrates 6‐bit RGB digital interface drivers as well as all the power supply circuitry to drive the LCD, which requires neither external driver ICs nor power‐supply ICs. This paper discusses the newly developed TFT circuit technologies used in this LCD. The development trend of the “System‐On‐Glass” display is also reviewed.  相似文献   

19.
Abstract— A low‐cost active‐matrix backplane using non‐laser polycrystalline silicon (poly‐Si) having inverse‐staggered TFTs with amorphous‐silicon (a‐Si) n+ contacts has been developed. The thin‐film transistors (TFTs) have a center‐offset gated structure to reduce the leakage current without scarifying the ON‐currents. The leakage current of the center‐offset TFTs at Vg = ?10 V is two orders of magnitude lower than those of the non‐offset TFTs. The center‐offset length of the TFTs was 3 μm for both the switching and driving TFTs. A 2.2‐in. QQVGA (1 60 × 1 20) active‐matrix organic light‐emitting‐diode (AMOLED) display was demonstrated using conventional 2T + 1C pixel circuits.  相似文献   

20.
Abstract— A novel flexible active‐matrix organic light‐emitting‐diode (OLED) display fabricated on planarized stainless—used‐steel substrates with a resolution of 85 dpi in a 4.7‐in. active area has been demonstrated. Amorphous indium—gallium—zinc—oxide thin‐film transistors were used as the backplane for the OLED display with high device performance, high electrical stability, and long lifetime. A full‐color moving image at a frame frequency of 60 Hz was also realized by using a flexible color filter directly patterned on a plastic substrate with a white OLED as the light source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号