首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article proposes to develop a WiFi‐controlled portable atomic force microscope (AFM). The AFM consists of a horizontal probe, controlling circuits, digital to analog (D/A) and analog to digital (A/D) interfaces, a microcomputer (Raspberry Pi, RPi), and a laptop. The proposed AFM uses a pocket‐size power supply to drive the controlling circuits, the D/A and A/D interfaces, as well as the RPi that constructs network hotspots and generates scanning signals. With special design and integration of the whole system, both of the AFM probe and electronic controlling system are portable. At a distance of 50 m from the proposed AFM, experiments in the constant height mode and the constant force mode are conducted to evaluate its performance. The results show that this WiFi‐controlled AFM has a maximum scan range of 3.6 × 3.6 μm2 with nanometer order resolution. Meanwhile, it achieves satisfactory image contrast, stability, and repeatability. Compared with conventional AFMs, the AFM proposed in this paper no longer relies on commercial AC mains supply or high‐voltage DC power supply, and realizes WiFi‐controlled AFM scanning and imaging in 50 m or farther without wire or network cable connection to a laptop or a desktop computer. Given credits to these features, WiFi‐controlled AFMs are expected to own a wider range of application, especially in isolated environments, outdoor researches, or even fieldwork investigations.  相似文献   

2.
We present a fibre-top probe fabricated by carving a tipped cantilever on an optical fibre, with the tip machined in correspondence of the fibre core. When approached to an optical prism illuminated under total internal reflection conditions, the tip of the cantilever detects the optical tunnelling signal, while the light coupled from the opposite end of the fibre measures the deflection of the cantilever. Our results suggest that fibre-top technology can be used for the development of a new generation of hybrid probes that can combine atomic force microscopy with scanning near field optical microscopy.  相似文献   

3.
原子力显微镜(AFM)在光盘检测及其质量控制中的应用   总被引:5,自引:0,他引:5  
综述了原子力显微镜(AFM)在光盘质量检测中的应用.AFM能够在nm尺度上直接对光盘及其模板上的信息位几何结构的特征尺寸及其误差进行三维测量,从而可以建立生产工艺参数和信息位几何结构之间、信息位几何结构和盘片电气性能之间的关系,进而找出影响光盘质量的直接原因.用AFM进行光盘质量检测主要有三方面:盘片和模板表面的定性观测;信息位几何结构的半定量分析;信息位特征尺寸的统计分析.定性观测和半定量分析可以对盘片播放的高误差率、凹坑形态和块出错率、凸台形态及其表面粗糙度等参数进行有针对性的检测;而信息位特征尺寸的统计分析则可以对信息位几何结构的关键参数进行面向生产过程的统计分析.所得结论表明AFM在光盘质量检测过程中具有独特的优势.  相似文献   

4.
为了提高原子力显微镜(Atomic Force Microscope,AFM)的成像速度,本文提出了一种新的AFM结构设计方案并搭建了相应的实验系统。在该方案中,Y、Z扫描器集成于测头内驱动探针进行慢轴扫描和形貌反馈;X扫描器与测头分离,驱动样品做快轴扫描。X扫描器采用高刚性的独立一维纳米位移台,能够承载尺寸和质量较大的样品高速往复运动而不易发生共振;同时Z扫描器的载荷实现最小化,固有频率得以显著提高。为了避免测头的扫描运动引起检测光束与探针相对位置的偏差,设计了一种随动式光杠杆光路;为了便于装卸探针以及精确调整激光在探针上的反射位置,设计了基于磁力的探针固定装置和相应的光路调节方案。对所搭建的AFM系统的初步测试结果表明,该系统在采用三角波驱动和简单PID控制算法的情况下,可搭载尺寸达数厘米且质量超过10g的较大样品实现13μm×13μm范围50Hz行频的高速成像。  相似文献   

5.
The sharpness of atomic force microscope (AFM) tips is essential for acquiring high quality AFM images. However, AFM tips would easily get contaminated during scanning and storage at ambient condition, which influences image resolution and causes image distortion. Replacing the probe frequently is a solution, but uneconomical. To solve this problem, several tip cleaning methods have been proposed but there is space for further improvement. Therefore, this article developed a method of tip cleaning by using a one‐dimensional grating (600 lines/mm) as a micro‐washboard to “wash” contaminated tips. We demonstrate that the contaminants can be scrubbed away by rapidly scanning such micro‐washboard against the tip in the aids of Z‐dithering (10–20 Hz) exerted on the washboard. This method is highly efficient and proved to be superior to traditional ones. Experiments show that AFM images acquired with “washed” tips have higher resolution and less distortion compared with images acquired using contaminated tips, even comparable to those scanned by new ones. Microsc. Res. Tech. 76:1131–1134, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
This paper describes an atomic force microscope (AFM) based instrument for nanometer edge profile measurements of diamond cutting tools. The instrument is combined with an AFM unit and an optical sensor for alignment of the AFM probe tip with the top of the diamond cutting tool edge in the submicrometer range. In the optical sensor, a laser beam from a laser diode is focused to generate a small beam spot with a diameter of approximately 10 μm at the beam waist, and then received by a photodiode. The tool edge top and the AFM probe tip are brought to the center of the beam waist, respectively, through monitoring the variation of the photodiode output. To reduce the influence of the electronic noise on the photodiode output so that the positioning resolution can be improved, a modulation technique is employed that modulates the photodiode output to an AC signal by driving the laser diode with a sinusoidal current. Alignment experiments and edge profile measurements are carried out.  相似文献   

7.
A combined optical and atomic force microscope for live cell investigations   总被引:6,自引:0,他引:6  
We present an easy-to-use combination of an atomic force microscope (AFM) and an epi-fluorescence microscope, which allows live cell imaging under physiological conditions. High-resolution AFM images were acquired while simultaneously monitoring either the fluorescence image of labeled membrane components, or a high-contrast optical image (DIC, differential interference contrast). By applying two complementary techniques at the same time, additional information and correlations between structure and function of living organisms were obtained. The synergy effects between fluorescence imaging and AFM were further demonstrated by probing fluorescence-labeled receptor clusters in the cell membrane via force spectroscopy using antibody-functionalized tips. The binding probability on receptor-containing areas identified with fluorescence microscopy ("receptor-positive sites") was significantly higher than that on sites lacking receptors.  相似文献   

8.
9.
The purpose of this study was to: (a) evaluate the role of enamel surface roughness on bond fatigue durability and (b) evaluate statistical differences in roughness values based on measurement technique, including the use of spatial filtering for optical profilometry (OP). OptiBond XTR (Kerr Corp), Prime & Bond elect (DENTSPLY Caulk), Scotchbond Universal (3 M Oral Care), and XTR pre‐etched with Ultra‐Etch phosphoric acid (35%) (Ultradent) self‐etch adhesives were used to treat enamel. A flat ground enamel surface was included as a control. Atomic force microscopy (AFM) and OP were used to measure the surface topography of each enamel surface following the application of adhesives. AFM, OP, and filtered OP (FOP) roughness values, where FOP was designed to only include the lateral spatial resolution consistent with AFM roughness values, were collected. Spatial resolution filtering with OriginPro was used to compare line scans from the two imaging techniques and generate the FOP group. These micro‐ versus nanoscale lateral roughness values were correlated with shear bond and shear fatigue strengths of the adhesives bonded to enamel. Roughness values showed differences based on measurement technique and strong correlations with bond and fatigue strength. The filtered OP group demonstrated the importance of careful usage and reporting of atomic force microscopy and OP metrics in adhesive dentistry. Best practices for surface roughness analysis were also discussed.  相似文献   

10.
11.
A modified tapping mode of the atomic force microscope (AFM) was introduced for manipulation, dissection, and lithography. By sufficiently decreasing the amplitude of AFM tip in the normal tapping mode and adjusting the setpoint, the tip-sample interaction can be efficiently controlled. This modified tapping mode has some characteristics of the AFM contact mode and can be used to manipulate nanoparticles, dissect biomolecules, and make lithographs on various surfaces. This method did not need any additional equipment and it can be applied to any AFM system.  相似文献   

12.
A large-sample atomic force microscope (AFM) that allows high resolution observation in both air and liquid has been developed. With a unique beam tracking method, laser beam is capable of reflecting off the same spot on the AFM cantilever throughout raster scan over the entire scan area, either operating in air or in liquid environment. Incorporating the stand-alone AFM probe unit with an automated large sample stage, wide-scan-range imaging can be realized with high resolution and slight distortion. In addition, an image stitching method is utilized to build a broad merged image with range up to millimeters while keeping nanometer order resolution. By using a large-volume liquid bath, large and massive sample can be observed in liquid with this AFM system. Several typical experiments have been carried out to demonstrate the imaging ability and stability of this AFM. Topographic structures of gold pattern on a glass substrate are scanned at two different places on the same specimen surface. The porosity of a sheet of filter paper is then characterized in both air and water. Finally, larger-area AFM image of anodic aluminum oxide template in oxalic acid is on spot obtained by merging several individually scanned images together. Experiments show that this AFM system can offer high resolution and wide range AFM images even for large samples with remarkable capabilities in various environments.  相似文献   

13.
The formation of networks is an important step in the synthesis of many biological assemblies. For example, during the synthesis of plant cell walls the factors which dictate the arrangement of the polymeric constituents that make up the cell wall are not yet understood. Factors such as site‐directed binding provide a possible theoretical background for beginning to understand the assembly of complex biological structures, but modelling of this process is difficult, time consuming and lacks experimental methods for verification. Through the use of atomic force microscopy (AFM) it has been demonstrated that changes in the binding of a single heterogeneous cell wall polysaccharide to a charged substrate can be followed in real time. Furthermore, subsequent image analysis allows the probability of binding of the molecule to be mapped to produce a real data set which is comparable with those obtained in simulation studies. In addition, these AFM studies have provided new mechanistic clues to the adsorption/desorption process of this polysaccharide.  相似文献   

14.
15.
A compact sensor head based on scanning force microscopy (SFM) using cantilever probes has been developed. The idea is to replace the microscope objective of a conventional optical microscope by this compact module and turn the optical microscope into a scanning force and near-field optical microscope with subwavelength resolution. We describe our concept and present initial results showing images of the object’s optical properties and surface topography recorded simultaneously.  相似文献   

16.
We report on a very compact desk‐top transmission extreme ultraviolet (EUV) microscope based on a laser‐plasma source with a double stream gas‐puff target, capable of acquiring magnified images of objects with a spatial (half‐pitch) resolution of sub‐50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi‐monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy.  相似文献   

17.
An original scanning near‐field cathodoluminescence microscope for nanostructure characterization has been developed and successfully tested. By using a bimorph piezoelectric stack both as actuator and detector, the developed setup constitutes a real improvement compared to previously reported SEM‐based solutions. The technique combines a scanning probe and a scanning electron microscope in order to simultaneously offer near‐field cathodoluminescence and topographic images of the sample. Share‐force topography and cathodoluminescence measurements on GaN, SiC and ZnO nanostructures using the developed setup are presented showing a nanometric resolution in both topography and cathodoluminescence images with increased sensitivity compared to classical luminescence techniques.  相似文献   

18.
19.
Atomic force microscopy (AFM) proved to be able to obtain high‐resolution three‐dimensional images of single‐membrane proteins, isolated, crystallized, or included in reconstructed model membranes. The extension of this technique to native systems, such as the protein immersed in a cell membrane, needs a careful manipulation of the biological sample to meet the experimental constraints for high‐resolution AFM imaging. In this article, a general protocol for sample preparation is presented, based on the mechanical stretch of the cell membrane. The effectiveness for AFM imaging has been tested on the basis of an integrated optical and AFM approach and the proposed method has been applied to cells expressing cystic fibrosis transmembrane conductance regulator, a channel involved in cystic fibrosis, showing the possibility to identify and analyze single proteins in the plasma membrane. Microsc. Res. Tech. 76:723–732, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Recent studies have revealed that water‐dispersible colloids play an important role in the transport of nutrients and contaminants in soils. In this study, water‐dispersible colloids extracted from saline–alkali soils have been characterized by atomic force microscopy (AFM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), and UV absorption spectra. AFM observation indicated that the water‐dispersible colloids contain some large plates and many small spherical particles. XRD, XPS, and UV absorption measurement revealed that the water‐dispersible colloids are composed of kaolinite, illite, calcite, quartz and humic acid. In addition, UV absorption measurement demonstrated that the humic acids are associated with clay minerals. Water‐dispersible colloids in the saline–alkali soils after hydrolyzed polymaleic anhydride treatment and an agricultural soil (nonsaline–alkali soil) were also investigated for comparison. The obtained results implied that the saline–alkali condition facilitates the formation of a large quantity of colloids. The use of AFM combined with spectrometric methods in the present study provides new knowledge on the colloid characteristics of saline–alkali soils. Microsc. Res. Tech. 79:525–531, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号