首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SSP of PET has been thoroughly investigated under the regimes of chemical reaction and particle diffusion control. However, the majority of industrial PET plants operate under conditions of surface by‐product diffusion control, mainly due to recycling cycles of the carrier gas. The presence of residual volatile by‐products in the carrier gas (especially water) may affect adversely the polymerization reaction and the resulting polymer quality. For this reason, the effects caused by varying water vapor content of the carrier gas on the course of the PET SSP are analyzed, with emphasis on the intrinsic viscosity. The presence of small amounts of water in the carrier gas is found to exert a pronounced effect on the course of polymerization, leading to significant reduction of the molar masses of the final product.

  相似文献   


2.
Novel nanocomposites prepared by melt mixing of MWCNTs in a hot‐melt adhesive PCL‐based polyurethane are investigated. The nucleating effect of MWCNTs and the confinement they cause to polymer chains are considered. The broadening of the glass transition is indicative of a growth of the immobilized amorphous fraction adhered to MWCNTs. In the molten state the formation of a combined polymer/MWCNT network is observed. Practical requisites of hot melt adhesives, such as adequate melting temperature, crystallization degree, and viscosity are preserved when MWCNTs are added. Improvement of strength at room temperature and welding rate during cooling, are observed.

  相似文献   


3.
Urethane/acrylic hybrid latex particles are prepared by miniemulsion polymerization for an application as soft adhesives. The polymerization of the acrylic monomers and grafting of an isocyanate functionalized PU on a hydroxyl functionalized monomer (HEMA) take place simultaneously, resulting in a complex PU/acrylic network while avoiding any macroscopic phase separation. Its structure can be tuned by changing the extent of grafting and a specific model is applied to analyze the final polymer microstructure. The resulting materials have a low level of adhesion but display an exceptionally high resistance to shear. Two parameters are varied: the fraction of HEMA in the monomer composition and the diol concentration.

  相似文献   


4.
Unfilled and MWCNT‐filled PA fibers are prepared and the effect of the extensional flow on their mechanical performance and morphological variations is investigated. Morphological analyses using SEM, TEM, and SAXS suggest a stronger orientation of the MWCNTs along the fiber direction with increasing extensional flow. A particular MWCNT bundle formation in the PA drawn nanocomposite fibers is observed for the first time, and a pull‐out of the central nanotube in some bundles is noted. The maintenance of the “shish‐kebab” structure upon extensional flow is responsible for the mechanical improvements and dimensional stability in MWCNT‐filled PA fibers.

  相似文献   


5.
Glass fiber biobased composites have been prepared by ROMP of a commercially available vegetable oil derivative possessing an unsaturated bicyclic moiety, and DCPD. The resins and the corresponding composites have been characterized thermophysically and mechanically. Higher DCPD content yields materials with higher glass transition temperatures. Glass fibers significantly improve the tensile modulus of the resin from 28.7 to 168 MPa. These biobased composites utilize only a limited amount of a petroleum‐based monomer, while employing substantial amounts of a renewable resource.

  相似文献   


6.
This paper demonstrates how the electric‐field‐assisted thermal annealing of octadecylamine‐functionalized SWNT/PMMA films induces an increase in the composite transversal conductivity of several orders of magnitude and a decrease in the lateral conductivity. This difference has been rationalized in terms of the nanotube alignment into the polymer matrix along the electric field direction. This result provides an initial understanding of how electric fields can be used to control the bulk physical properties of such nanocomposites.

  相似文献   


7.
Electroactive macroporous poly[(vinylidene fluoride)‐co‐trifluoroethylene] membranes have been produced by solvent evaporation at room temperature, starting with a diluted solution of the copolymer in dimethylformamide. The pore architecture consists of interconnected spherical pores. This architecture is independent of the membrane thickness. The thickness of the membranes ranges from a few to several hundred µm, using spin coating and evaporation in static conditions, respectively. The pore structure is explained by a spinodal decomposition of the liquid/liquid phase separation and crystallization in the copolymer‐rich phase.

  相似文献   


8.
In order to enhance the molecular orientation of electrospun nanofibers, a novel collection technique is proposed and applied to the spinning of polyethylene from high temperature solution. The technique makes use of a parallel‐electrode collector that acts before solidification of the fiber occurs. The resulting multiple‐necking morphology is composed of fine nanofibrils with very small diameter and narrow size distribution. The crystalline orientation of the nanofibrils was analyzed by TED. The formation mechanism of the nanofibrils is discussed. The strong elongational effect of the electric‐field‐induced stretching force in the parallel‐electrode collector is demonstrated by the orientational analysis and by observation of the multiple‐necking morphology.

  相似文献   


9.
An aqueous dispersion of gold nanoparticles was added to an acrylic resin and UV‐cured. The photopolymerization process was followed by means of real‐time FT‐IR spectroscopy. Nanostructured coatings containing a homogeneous dispersion of gold nanoparticles with an average size range of 20–25 nm were achieved. Macroscopic aggregation during polymerization was avoided due to the rapid initiation and kinetic associated with the photopolymerization technique, which allowed the medium to quickly solidify around the dispersion particles.

  相似文献   


10.
A novel multi‐compound electrospinning method is described, using high‐conductivity aqueous solutions for the inner fluid and low‐conductivity polymeric solutions for the outer fluids. The driving fluid among inner fluids at the equivalent conductivity is switched at a certain frequency. The switching of the Taylor cone results in the alternative embedding of inner components. Also, the number of inner capillaries is proportional to the encapsulation components. Therefore, our method might be useful to alternatively encapsulate a variety of water‐soluble materials in fibers.

  相似文献   


11.
MWCNT‐based composites have been successfully synthesized via layer‐by‐layer self‐assembly of crosslinked polyphosphazene nanoparticles on the surface of MWCNTs. The amino‐terminated CNTs were characterized by XPS, FT‐IR spectroscopy, EDS, XRD and TEM. The degree of functionalization could be controlled by simply changing the mass of hexachlorocyclotriphosphazene with 4,4′‐diaminodiphenyl ether. The activity of the surface amino groups was confirmed by the reaction of these groups with HAuCl4. In addition, the effects of the mass of HCCP and ODA ratios on the content of the surface amino groups was also investigated.

  相似文献   


12.
An electrospinning method to obtain well‐aligned self‐assembled PVDF fibers in the form of yarn structures is presented. Post‐treatments such as stretching at 100 °C and annealing improve the tensile modulus and strength of the fibers by 17 and 41%, respectively. The results reveal that post‐treatment on fiber yarns induce crystallinity and β‐crystalline phase formation, which in turn impart a noticeable effect on the strength and stiffness of the fibers. An ≈10% improvement in the ferroelectric β‐crystalline phase fraction is estimated for the post‐treated yarns. Such yarn structures with improved strength and ferroelectric β‐phase content can be useful for nanoscale and microscale electronic devices.

  相似文献   


13.
Developing co‐continuity in a polymer blend determines a multiphase system with enhanced properties which originate from the synergism of its constituents. Filling a blend with nanoparticles is a promising route to guide its morphology and eventually affect the co‐continuity transition. We add different kinds of nanoparticles to an HDPE/PEO blend to study how they affect the morphology of the blend as function of their surface properties and form factor. We find that PEO drop size is drastically reduced by particles adsorbed at the HDPE/PEO interface. However, we show that a drastic shifting of the co‐continuity threshold may only be achieved when particles affect the rheology of the interface.

  相似文献   


14.
The depletion of selected substituted phenol stabilizers from systems simulating self‐etching dental adhesives is studied. If the adhesive monomer is an acrylate derivative, the stabilizer disappears quickly. Experimental results support the hypothesis that the phenol stabilizers are depleted from the system via a non‐radical reaction with the acrylic double bond in addition to the free‐radical mechanism. The C‐conjugate addition of aryloxide anions to the acrylate double bonds (the Michael reaction) is proposed as the reaction mechanism. The rate of the acid‐catalyzed Michael addition between acrylate monomers and phenolic stabilizers depends on the strength of the acidic catalyst.

  相似文献   


15.
Toughness enhancement of S‐(S/B)‐S triblock copolymers via a molecular‐weight‐controlled pathway is demonstrated. The post‐yield crack toughness behavior of the triblock copolymers uniquely reveal a brittle‐to‐semiductile‐to‐ductile transition with increasing while keeping the basic molecular architecture fixed. TEM and SAXS investigations indicated three distinct morphologies as a function of χeffN as a consequence of the increase in : (i) a homogeneous structure without phase‐separation, (ii) a weakly segregated structure, and (iii) a lamellar structure. The increase in crack toughness is also reaffirmed from kinetic and strain field analysis studies concerning dynamics of crack growth in block copolymers with high PS content.

  相似文献   


16.
Polystyrene and copper nanowires were melt‐mixedat 200 °C and 50 rpm in 5 mL and 15 mL DSM co‐rotating conical micro‐compounders (DSM5 and DSM 15), respectively. The electrical, morphological and rheological properties of the resulting nanocomposites were studied. The electrical percolation of nanocomposites is between 1.0 and 2.0 vol.‐% for the composites prepared in DSM5 and above 2.0 vol.‐% for the composites prepared in DSM15. SEM micrographs show smaller copper nanowire agglomerates inside polystyrene from DSM15 than those from DSM5. However, TEM micrographs reveal that both single copper nanowires and nanowire bundles coexist in the polymer matrix for the samples prepared in both micro‐compounders. No obvious microstructure transition is detected by the dynamic rheological data at 200 °C.

  相似文献   


17.
Nanocomposite UV coatings with adjustable properties for use on wood substrates in outdoor conditions were developed. Nanoscale ZnO was shown to be an efficient light absorber. Coatings were characterized in terms of elongation at brake, residual PI and double bond conversion, universal hardness, transparency, hydrophobicity, and yellowing. Coated samples were artificially weathered and studied with regard to their optical and mechanical properties, as well as to changes in brightness, transparency, hydrophobicity, and water permeability. The prepared wood coatings showed an increased weather fastness and improved optical properties. The suitability for use in outdoor conditions was assured by optimizing the elasticity of the coating and decreasing its water permeability.

  相似文献   


18.
The synthesis of PMMA‐based nanoparticles (NPs) covalently labeled with a fluorescent dye is investigated for imaging applications such as cell uptake and biodistribution. Batch emulsion polymerization (BEP) and monomer‐starved semi‐batch emulsion polymerization (MSSEP) are adopted using SDS. Fluorescent properties are added to these NPs using Rhodamine‐B (RhB) as a fluorescent dye covalently bonded to 2‐hyroxyethyl‐acrylate. The resulting HEMA‐RhB monomer is copolymerized with MMA via BEP and MSSEP to synthesize fluorescent NPs. Subsequently, SDS is substituted with a biocompatible surfactant, Tween80, through ionic‐exchange resins. ζ‐Potential measurements confirmed the complete surfactant exchange that leads to biocompatible fluorescent NPs with tunable size and narrow size distribution.

  相似文献   


19.
Chemical modification of EVOH in the molten state at 185 °C by a grafting from process of poly(ε‐caprolactone) in batch was studied. 1H NMR was used to characterize the structure evolutions of PCL grafts. In addition to grafting reactions, dynamic covalent transesterification reactions between EVOH residual alcohols and the polyester grafts led to a redistribution of the PCL grafts length. up to 27 and SR up to 80% were obtained. Experiments made in a corotating mini twin‐screw extruder also confirmed these results. The effect of the alcohol to caprolactone ratio and catalyst concentration (SnOct2) on kinetic evolution showed that few minutes were necessary to complete the polymerization. A kinetic model was proposed and adequate conditions for the synthesis by reactive extrusion were defined.

  相似文献   


20.
The structural requirements for the preparation of polyether polyol/Na+‐montmorillonite nanocomposites, which are used in polyurethane/NaMMT nanocomposites, were evaluated using X‐ray diffraction, thermogravimetric analysis and shear viscosity behavior. Nanocomposites based on homopolyetherols: poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), polytetrahydrofuran (PTHF), block‐type copolyetherols and a SAN‐grafted polymer polyol were prepared. Intercalation was observed only with oxyethylene (EO) units containing polyetherols. The amount of the intercalated polyetherol ranged from 15 to 30 wt.‐%. EO‐sequences of 5 to 6 units proved to be sufficient for intercalation, which suggests a crown‐ether type complexation of interlayer cations.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号