首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyperbranched PEI and urea‐functionalized PEI amphiphiles are employed as additives in NBR compounding. Polarity design governing phase separation, PEI migration and PEI‐mediated self‐healing of NBR is demonstrated. The compatibility of PEI and NBR decreases with increasing molecular weight of PEI and with decreasing degree of substitution. Microphase‐separated NBR/PEI blends are prepared with varying PEI molecular architectures. Thermal self‐healing of NBR/PEI is monitored by applying tests combining crack initiation with annealing under compression. All PEI additives show complete crack‐healing upon annealing at 100 °C for 12 h. In contrast to neat NBR, the NBR/PEI‐2 blend afforded a self‐healing efficiency of 44% after cutting and re‐joining by compression and annealing.

  相似文献   


2.
Most of elastomers for fabrication of comfortable epidermal devices and smart actuators produce responsive signals by the stimuli‐induced deformation. Herein, a dynamic visualization of external stimuli rather than the deformation through synthesis of a self‐healing poly(dimethylsiloxane) (PDMS)‐based elastomer doped with aggregation‐induced emission (AIE) molecules is reported. The self‐healing PDMS‐based elastomer is designed and synthesized through molecule integration of reversible multi‐strength H‐bonds and permanent covalent crosslink sites. The adjustment of the weight ratio of elastic cross‐linker offers tunable mechanical properties of the resultant elastomer. After doping such an elastomer with AIE molecules of 1,1,2,2‐tetrakis(4‐nitrophenyl)ethane, the elastomer composite displays strong on–off fluorescence depending upon mechanical damage and temperatures, which can be used to detect the breaking and self‐healing performances, as well as the temperature change. The strategy described here provides another way to develop smart polymeric elastomers for practical applications.  相似文献   

3.
Novel self‐healing supramolecular elastomers based on polydimethylsiloxanes (SESi) were synthesized from a mixture of polydimethylsiloxanes derivers with single, di‐, or tri‐carboxylic acid groups (PDMS–COOHx, where x = 1, 2, and 3, respectively), diethylene triamine, and urea with a two‐stage procedure. The reactions and the final products were tracked, characterized, and confirmed by Fourier transform infrared spectroscopy, 1H‐NMR, differential scanning calorimetry, dynamic mechanical analysis, and gel permeation chromatography. Compared with a supramolecular rubber based on dimer acid (reported previously) with a similar synthesis procedure, the SESi showed a lower glass‐transition temperature of about ?113°C for the softer chain of polydimethylsiloxane and showed real rubberlike elastic behavior and self‐healing properties at room temperature or even lower temperatures. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
The effect of blending on the self‐healing behavior of an ethylene/methacrylic acid copolymer ionomer is investigated. Binary EMNa/EVA and EMNa/ENR blends are studied by ballistic puncture tests. In the composition range explored (15–50 wt% of EVA and ENR), the self‐healing characteristics decrease with increasing amount of EVA but are maintained in the whole range for EMNa/ENR blends. The bullet impact zones were observed using OM. Tensile tests showed that the blending process gives the opportunity to tune the mechanical characteristics without significant loss in the self‐healing properties, particularly in EMNa/ENR blends. Component compatibility, blend morphology and thermal properties were studied using DSC, SEM, and DMTA. Molecular interactions between the phases in the blends are discussed.

  相似文献   


5.
A new series of six imidazolium‐based ionenes containing aromatic amide linkages has been developed. These ionene‐polyamides are all constitutional isomers varying in the regiochemistry of the amide linkages (para, meta) and xylyl linkages (ortho, meta, para) along the polymer backbone. The physical properties as well as the gas separation behaviors of the corresponding membranes have been extensively studied. These ionene‐polyamide membranes show excellent thermal and mechanical stabilities, together with self‐healing and shape memory characteristics. Most importantly, [TC‐API(p)‐Xy][Tf2N] and [IC‐API(m)‐Xy][Tf2N] membranes (TC, terephthaloyl chloride; API, 1‐(3‐aminopropyl)imidazole; Xy, xylyl; Tf2N, bis(trifluoromethylsulfonyl) imide; IC, isophthaloyl chloride), where the amide and xylyl linkages are attached at para and meta positions, exhibit superior selectivity for CO2/CH4 and CO2/N2 gas pairs. We also demonstrate the transport properties and diverse applicability of our newly developed ionene‐polyamides, particularly [TC‐API(p)‐Xy][Tf2N], for various industrial applications. © 2019 Society of Chemical Industry  相似文献   

6.
The review is focused on the formation and the self‐healing properties of polymer and hybrid multilayers formed via the layer‐by‐layer approach. In the first part of the review the recent developments in the construction of polymer multilayers are highlighted. In the second part the design and the self‐healing properties of inorganic ? polymer hybrid multilayers are described. It is shown that self‐healing multilayers have a broad spectrum of applications including corrosion protection, as elements of antifouling and antimicrobial coatings and bio‐inspired superhydrophobic interfaces. It is demonstrated that dynamic functional interfaces have a complex hierarchical organization of non‐covalently bonded polymers and colloidal particles. Mechanisms of self‐healing behavior of the multilayers and the role of water and external stimuli (pH, ionic strength and temperature, light) in swelling of multilayers and rearrangement of polymer segments are discussed. Future trends, perspectives and research strategies for the design of ‘smart’ self‐assemblies with self‐healing properties are proposed. © 2015 Society of Chemical Industry  相似文献   

7.
In this work, the mechanical and the self‐healing behaviors of an ethylene‐co‐methacrylic acid ionomer were investigated in different testing conditions. The self‐healing capability was explored by ballistic impact tests at low‐velocity, midvelocity, and hypervelocity bullet speed; different experimental conditions such as sample thickness and bullet diameter were examined; in all impact tests, spherical projectiles were used. These experiments, in particular those at low and midspeed, allowed to define a critical ratio between sample thickness and bullet diameter below which full repair was not observed. After ballistic damage, the healing efficiency was evaluated by applying a pressure gradient through tested samples. Subsequently, morphology analysis of the affected areas was made observing all tested samples by scanning electron microscope. This analysis revealed different characteristic features of the damaged zones affected at different projectile speed. Stress–strain curves in uniaxial tension performed at different temperatures and strain rates revealed yield strength and postyield behavior significantly affected by these two parameters. A rise of temperature during high strain rate tests in the viscoplastic deformation region was also detected. This behavior has a strong influence on the self‐repairing mechanism exhibited by the studied material during high‐energy impact tests. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1949–1958, 2013  相似文献   

8.
Self‐healing of polymers and polymer composites initially represented a process capable of autonomic restoration of mechanical strength upon cracking of the materials, but it is moving into the area of restoration of functionality. This mini‐review is focused on recent efforts to develop functional polymers with built‐in stimuli‐responsive ability to heal for recovery of their specific physical or chemical properties. Molecular design and synthesis, compounding and assembly of organic and inorganic species, inherent reversibility, etc., are summarized. It is hoped that much more interest will be aroused in this emerging and promising frontier topic. © 2014 Society of Chemical Industry  相似文献   

9.
10.
In this study, the development and characterization of an intrinsically self‐healable material have been reported based on bromobutyl rubber (BIIR) modified with imidazole (Im) and loaded with carbon nanotubes (CNTs) as reinforcing and electrically conducting agent. The ionic imidazolium groups facilitate an ionic network, which imparts the composites a pronounced self‐healing behavior. The cation‐π bondings between modified BIIR and CNT surface improve the rubber‐filler interaction leading to a better mechanical performance and a higher electrical conductivity of the composites. It has been demonstrated that the healing process can be accelerated by applying an electrical current across a damaged surface of a test specimen owing to the Joule heating effect. The recovery of the mechanical and electrical properties of the composites is investigated under different test conditions and specifically discussed in terms of the rubber‐filler interactions and the filler dispersion. The applied scientific approach with the exploration of the unique nature of the imidazolium modified and CNT loaded BIIR may promote developments for a new class of rubber materials for different smart and technological applications.

  相似文献   


11.
A hybrid chemically and physically linked polyacrylamide (PAM)/carboxymethyl hydroxypropyl guar gum (CMHPG) system is prepared via a fast and controllable one‐pot strategy. Due to the synergetic effect of the non‐covalent interactions between chains, these systems show improved, balanced mechanical properties. The apparent morphology, storage modulus G′, and loss modulus G″ show that these systems have rapid and almost full recovery ability (the self‐healing efficiency can reach 95%) with several hydrogen‐bonding interactions between two networks. This self‐healing property can cover the shortage of G′, G″, and viscosity loss at high shear force, which will help the system keep enough viscosity to create fractures or carry proppants during the whole fracturing process. Meanwhile, the self‐healing fracturing fluid can be broken easily and flow back to surface with little damage to the fracture conductivity, indicating great potential in unconventional reservoir which is sensitive to the fracturing fluid damage.  相似文献   

12.
In biological system, early detection and treatment at the same moment is highly required. For synthetic materials, it is demanding to develop materials that possess self‐reporting of early damage and self‐healing simultaneously. This dual function is achieved in this work by introducing an intelligent pH‐responsive coatings based on poly(divinylbenzene)‐graft‐poly(divinylbenzene‐co‐methacrylic acid) (PDVB‐graft‐P(DVB‐co‐AA)) core–shell microspheres as smart components of the polymer coatings for corrosion protection. The key component, synthesized PDVB‐graft‐P(DVB‐co‐AA) core–shell microspheres are porous and pH responsive. The porosity allows for encapsulation of the corrosion inhibitor of benzotriazole and the fluorescent probe, coumarin. Both loading capacities can be up to about 15 wt%. The polymeric coatings doped with the synthesized microspheres can adapt immediately to the varied variation in pH value from the electrochemical corrosion reaction and release active molecules on demand onto the damaged cracks of the coatings on metal surfaces. It leads simultaneously to the dual functions of self‐healing and self‐reporting. The corrosion area can be self‐reported in 6 h, while the substrate can be protected at least for 1 month in 3.5 wt% NaCl solution. These pH‐responsive materials with self‐reporting and self‐healing dual functions are highly expected to have a bright future due to their smart, long‐lasting, recyclable, and multifunctional properties.  相似文献   

13.
Self‐healing polymers are a class of functional polymers that, by the virtue of the presence of certain dynamic chemical linkages, may undergo self‐repair at a mechanically cut surface. Herein we report the synthesis of a self‐healing polymer giving access to double dynamicity within the polymer network by making use simultaneously of reversible covalent bonds and dynamic non‐covalent hydrogen bonding interactions. These features are provided, respectively, by doubly dynamic cassettes comprising chemically reversible imine linkages and multiply hydrogen‐bonded urea groups, connected by a siloxane‐based backbone that imparts softness to the material. Such a system can be envisaged to give access to a broad spectrum of functional materials, which can be tuned by convenient modulation of the structural motifs of the polymer. © 2013 Society of Chemical Industry  相似文献   

14.
The polydimethylisioxane elastomer based on Diels–Alder (DA) chemistry is successfully prepared by directly crosslinking bis(3‐aminopropyl)‐terminated polydimethylsiloxane with the bisepoxide containing two DA bonds in one molecule via epoxy‐amine reaction. The elastomer prepared based on DA chemistry exhibits good mechanical property, high self‐healing, and remolded efficiencies. The as‐prepared elastomer can be stretched to over 400% and its tensile strength can reach 0.80 MPa. The self‐healing efficiency and remolded efficiency are up to 93% and 95%, respectively. This work provides a simple and efficient way to fabricate the self‐healing and remolded polydimethylsiloxane elastomer with good mechanical properties. The as‐prepared elastomer has a promising potential in artificial muscles, protective coatings, and intelligent flexible electronics.  相似文献   

15.
Self‐healing paints would have the potential benefit of protecting the underlying substrate and extending the coating's service life. As a step toward those types of coatings, this work examines layer‐by‐layer films of branched poly(ethylene imine)/poly(acrylic acid) with the inclusion of various types of latex particles with different Tg and different compositions. Due to high mobility of the polyelectrolyte chains when plasticized with water, water enabled self‐healing of these films is demonstrated, as well as steam enabled self‐healing. The films with various latex particles show different swelling ratios, surface hydrophilicity, as well as varying ability to self‐heal scratches. This self‐healing property is studied as a function of temperature. Also, the mechanical properties such as hardness and modulus of the films are measured.  相似文献   

16.
Self‐healing hydrogels are attractive for a variety of applications including wound dressings and coatings. This paper describes the facile preparation and characterization of an autonomous self‐healing hydrogel system comprising surfactant‐free hydrophobic associations. The hydrogel comprised a copolymer of benzyl methacrylate (B), octadecyl methacrylate (O), and methacrylic acid (MA). The hydrogels were prepared via a controlled dehydration procedure to achieve the formation of strong intermolecular hydrophobic associations of the octadecyl groups above a critical polymer concentration. Fractured hydrogels healed within 30 min without any external intervention. Increasing hydrogel polymer content from 31 wt % to 39 wt % resulted in a threefold increase in the shear modulus and 50% reduction of the relaxation time. Addition of 4 mM NaCl to a hydrogel of 31 wt % polymer content resulted in 2.5 times longer relaxation time and 24% decrease in shear modulus. The hydrogels swelled up water by up to four times its weight, which corroborates the robustness of the hydrophobic association crosslinks. The bulk properties of the hydrogels are discussed in terms of the hydrophobic associations of the O‐groups and the electrostatic interaction of the MA‐groups in the polymer chains. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44800.  相似文献   

17.
18.
19.
Intelligent materials possess the function of self‐judgment and self‐optimization while sensing external stimuli such as stress, temperature, moisture, pH, electric or magnetic fields, or light. Besides, they often require self‐healing—the ability to repair damage spontaneously—or shape‐memory—the ability to return from a deformed state to their original shape induced by an external stimulus. Introducing such intelligence into superconducting (SC) devices is highly desirable to meet the critical requirement of maintenance‐free performance. Here, self‐healing and shape‐memory functions are realized in liquid metal based SC devices using smart packaging polymers. Without deteriorating their superconductivity, the SC devices can repair themselves by simply raising the temperature, without any other treatment. Beyond the specific functions achieved here, this work sheds new light on future SC devices with advanced functions such as self‐diagnosis, self‐adjusting, and sensing.  相似文献   

20.
Chemically stable polyphenylene ether (PPO) microcapsules (MCs) filled with epoxy resins (PPO‐EP MCs) were prepared using low‐molecular‐weight PPO with vinyl end‐groups as shell wall and epoxy resins as core material using an oil‐in‐water emulsion solvent evaporation method. This method for synthesizing MCs with PPO shell walls is simple, convenient and novel, which can avoid the influence of processing parameters on the chemical stability of the epoxy resin core material. The resulting PPO‐EP MCs exhibit good chemical stability below 255 °C mainly owing to the absence of a polymerization catalyst of the epoxy resins. The initial thermal decomposition temperature of the MCs is about 275 °C. The MCs were embedded in a 4,4′‐bismaleimidodiphenylmethane/O,O′‐diallylbisphenol A (BMI/BA) thermosetting resin system. When processed at high temperature (up to 220 °C), the microencapsulated epoxy resins could be released from the fractured MCs to matrix crack surfaces and bond the crack surfaces. An amount of 8 wt% MCs restored 91 and 112% of the original fracture toughness of the BMI/BA matrix when heated at 220 °C/2 h and 80 °C/1 h + 220 °C/2 h, respectively. The MCs only slightly decreased the thermal property of the matrix. © 2016 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号