共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dual layered display or also called tensor display that consists of two panels in a stack can present full‐parallax 3D images with high resolution and continuous motion parallax by reconstructing corresponding light ray field within a viewing angle. The depth range where the 3D images can be displayed with reasonable resolution, however, is limited around the panel stack. In this paper, we propose a dual layered display that can present stereoscopic images to multiple viewers located at arbitrary positions in observer space with high resolution and large depth range. Combined with the viewer tracking system, the proposed method provides a practical way to realize high‐resolution large‐depth auto‐stereoscopic 3D display for multiple observers without restriction on the observer position and the head orientation. 相似文献
3.
Relighting with the Reflected Irradiance Field: Representation,Sampling and Reconstruction 总被引:1,自引:0,他引:1
Lin Zhouchen Wong Tien-Tsin Shum Heung-Yeung 《International Journal of Computer Vision》2002,49(2-3):229-246
Image-based relighting (IBL) is a technique to change the illumination of an image-based object/scene. In this paper, we define a representation called the reflected irradiance field which records the light reflected from a scene as viewed at a fixed viewpoint as a result of moving a point light source on a plane. It synthesizes a novel image under a different illumination by interpolating and superimposing appropriate recorded samples. Furthermore, we study the minimum sampling problem of the reflected irradiance field, i.e., how many light source positions are needed. We find that there exists a geometry-independent bound for the sampling interval whenever the second-order derivatives of the surface BRDF and the minimum depth of the scene are bounded. This bound ensures that when the novel light source is on the plane, the error in the reconstructed image is controlled by a given tolerance, regardless of the geometry. We also analyze the bound of depth error so that the extra reconstruction error can also be governed when the novel light source is off-plane. Experiments on both synthetic and real surfaces are conducted to verify our analysis. 相似文献
4.
Renjie Chen Andrew Maimone Henry Fuchs Ramesh Raskar Gordon Wetzstein 《Journal of the Society for Information Display》2014,22(10):525-534
In this paper, we discuss an intuitive extension to compressive multilayer light field displays that greatly extends their field of view and depth of field. Rather than optimizing these displays to create a moderately narrow field of view at the center of the display, we constrain optimization to create narrow view cones that are directed to a few viewers' eyes, allowing the available display bandwidth to be utilized more efficiently. These narrow view cones follow the viewers, creating a wide apparent field of view. Imagery is also recalculated for the viewers' exact eye positions, creating a greater depth of field. The view cones can be scaled to match the positional error and latency of the tracking system. Using more efficient optimization and commodity tracking hardware and software, we demonstrate a real‐time, glasses‐free 3D display that offers a 100° × 40° field of view. 相似文献
5.
A head‐mounted light field display based on integral imaging is considered as one of the promising methods that can render correct or nearly correct focus cues and address the well‐known vergence‐accommodation conflict problem in head‐mounted displays. Despite its great potential, it still suffers some of the same limitations of conventional integral imaging‐based displays such as low spatial resolution and crosstalk. In this paper, we present a prototype design using tunable lens and aperture array to render 3D scenes over a large depth range while maintaining high image quality and minimizing crosstalk. Experimental results verify and show that the proposed design could significantly improve the viewing experience. 相似文献
6.
Naoto Okaichi Masahiro Kawakita Hisayuki Sasaki Hayato Watanabe Tomoyuki Mishina 《Journal of the Society for Information Display》2019,27(1):41-52
This paper proposes a method for combining multiple integral three‐dimensional (3D) images using direct‐view displays to obtain high‐quality results. A multi‐image combining optical system (MICOS) is used to enlarge and combine multiple integral 3D images without gaps. An optical design with a simple lens configuration that does not require a diffuser plate prevents the deterioration in resolution resulting from lens arrangement errors and the diffuser plate. An experiment was performed to compare a previously developed method with the proposed method, and the latter showed a significant improvement in image quality. A method for expanding the effective viewing angle of the proposed optical design was also developed, and its effectiveness was confirmed experimentally. A prototype device of the proposed optical design was constructed using a high‐density organic light‐emitting diode (OLED) panel with 8K resolution and 1058 ppi pixel density to achieve 311 (H) × 175 (V) elemental images, a viewing angle of 20.6° in both the horizontal and vertical directions, and a display size of 9.1 in. In addition, the proposed optical design enabled making device considerably thinner, ie, with a thickness of only 47 mm. 相似文献
7.
Junya Nakamura Taichi Takahashi Chih‐Wei Chen Yi‐Pai Huang Yasuhiro Takaki 《Journal of the Society for Information Display》2012,20(4):228-234
Abstract— The viewing freedom of the reduced‐view super multi‐view (SMV) display was analyzed. It was found that there are separate multiple viewing ranges in the depth direction; thus, a technique that selects an appropriate viewing range to increase the longitudinal viewing freedom has been developed. Pixels of a flat‐panel display viewed by the viewer's eyes through a lenticular lens were determined from three‐dimensional (3‐D) positions of the viewer's eyes, which were obtained using an eye‐tracking system that employed a stereo camera. Parallax images corresponding to the 3‐D positions of the viewer's eyes were generated, which were displayed by the determined pixels. The experimental results show that the proposed technique successfully increased the longitudinal viewing freedom. It is also shown that a video camera was able to focus on the produced SMV images. 相似文献
8.
Zong Qin Ping‐Yen Chou Jui‐Yi Wu Yu‐Ting Chen Cheng‐Ting Huang Nikhil Balram Yi‐Pai Huang 《Journal of the Society for Information Display》2019,27(4):238-250
Near‐eye light field displays based on integral imaging through a microlens array provide attractive features like ultra‐compact volume and freedom of the vergence‐accommodation conflict to head‐mounted displays with virtual or augmented reality functions. To enable optimal design and analysis of such systems, it is desirable to have a physical model that incorporates all factors that affect the image formation, including diffraction, aberration, defocusing, and pixel size. Therefore, in this study, using the fundamental Huygens‐Fresnel principle and the Arizona eye model with adjustable accommodation, we develop an image formation model that can numerically calculate the retinal light field image with near‐perfect accuracy, and experimentally verify it with a prototype system. Next, based on this model, the visual resolution is analyzed for different field of views (FOVs). As a result, a rapid resolution decay with respect to FOV caused by off‐axis aberration is demonstrated. Finally, resolution variations as a function of image depth are analyzed based on systems with different central depth planes. Significantly, the resolution decay is revealed to plateau when the image depth is large enough, which is different from real‐image type light field displays. 相似文献
9.
A compact four element multi‐band multi‐input multi‐output (MIMO) antenna system for 4G/5G and IoT applications is presented in this paper. The proposed antenna is developed using the theory of characteristic modes helping in systematic design of MIMO antenna system. It consists of four L‐shaped planar inverted‐F antenna (PIFA) elements each operating at 3.5, 12.5, and 17 GHz bands with the bandwidth of 359 MHz, 1 GHz, and more than 3.7 GHz, respectively. The proposed antenna system is suitable for both 4G/5G and internet of things devices as it shows the satisfactory MIMO system performance. Good isolation characteristics are observed by implementing complimentary Metamaterial structure on the ground plane resulting in isolation level lower than ?21 dB between the antenna elements. The proposed antenna is fabricated and experimental results are also presented and discussed. 相似文献
10.
Ramesh Raskar Jeroen Van Baar Paul Beardsley 《Journal of the Society for Information Display》2004,12(4):389-396
Abstract— Projectors, like computers, are becoming commoditized. Self‐contained computers are now being networked to create computing grids, allowing transparent access to a large computing resource or massive data storage. Image presentation devices can be similarly modified to support the concept of a “display grid” to create large seamless displays. Limiting ourselves to projector‐based display grids, we present techniques for creating multi‐projector displays via self‐configuring clusters of autonomous projectors. The ad‐hoc clustering approach avoids large monolithic installations. We show a low‐cost system that supports dynamic inclusion of new projectors, automatic geometric configuration, and seamless blending of overlapping projectors. 相似文献
11.
Yun‐Sheng Ku Shu‐Wei Kuo Yu‐Sheng Huang Ching‐Yao Chen Kuo‐Long Lo Wei‐Yuan Cheng Jyh‐Wen Shiu 《Journal of the Society for Information Display》2011,19(7):488-495
Abstract— This paper describes a single‐layered multi‐color electrowetting display (EWD) by using ink‐jet‐printing (IJP) technology and comparing different pattern electrodes with the use of the numerical investigations of ANSYS FLUENT®. This work consists of two parts: the first describes the design of implementing a single‐layered multi‐color EWD and the second demonstrates the application of ANSYS FLUENT® simulation in different pattern electrodes settings on the proposed EWD. The single‐layered multi‐color EW device was evaluated by using various colored oils without adopting a color filter. The single‐layered multi‐color EWD at a driving voltage of 25 V can achieve a maximum aperture ratio and reflectivity of 80% and 38.5%, respectively. The colored saturation of R, G, B oils can increase to 50% (NTSC: 13.3–27.8%). In addition, a radiate electrode at the required viewable area condition of 85% and force 5 * Fk, which results in ink stable contraction and a shorter response time of 50% (radiate vs. square), was proposed. The experimental results and simulation demonstrate that ink‐jet‐printing (IJP) technology along with the use of radiate electrodes can result in a single‐layered multi‐color EWD with a shorter response time. 相似文献
12.
Brian T. Schowengerdt Eric J. Seibel 《Journal of the Society for Information Display》2006,14(2):135-143
Abstract— Conventional stereoscopic displays require viewers to unnaturally keep eye accommodation fixed at one focal distance while they dynamically change vergence to view objects at different distances. This forced decoupling of reflexively linked processes fatigues eyes, causes discomfort, compromises image quality, and may lead to pathologies in developing visual systems. Volumetric displays can overcome this conflict, but only for small objects placed within a limited range of viewing distances and accommodation levels, and cannot render occlusion cues correctly. Our multi‐planar True 3‐D displays generate accommodation cues that match vergence and stereoscopic retinal disparity demands and can display images and objects at viewing distances throughout the full range of human accommodation (from 6.25 cm to infinity), better mimicking natural vision and minimizing eye fatigue. 相似文献
13.
Shuxin Liu Yan Li Pengcheng Zhou Xiao Li Na Rong Shuaijia Huang Wenqing Lu Yikai Su 《Journal of the Society for Information Display》2016,24(4):246-251
Augmented reality (AR) display technology greatly enhances users' perception of and interaction with the real world by superimposing a computer‐generated virtual scene on the real physical world. The main problem of the state‐of‐the‐art 3D AR head‐mounted displays (HMDs) is the accommodation‐vergence conflict because the 2D images displayed by flat panel devices are at a fixed distance from the eyes. In this paper, we present a design for an optical see‐through HMD utilizing multi‐plane display technology for AR applications. This approach manages to provide correct depth information and solves the accommodation‐vergence conflict problem. In our system, a projector projects slices of a 3D scene onto a stack of polymer‐stabilized liquid crystal scattering shutters in time sequence to reconstruct the 3D scene. The polymer‐stabilized liquid crystal shutters have sub‐millisecond switching time that enables sufficient number of shutters to achieve high depth resolution. A proof‐of‐concept two‐plane optical see‐through HMD prototype is demonstrated. Our design can be made lightweight, compact, with high resolution, and large depth range from near the eye to infinity and thus holds great potential for fatigue‐free AR HMDs. 相似文献
14.
Phil Surman Ian Sexton Richard Bates Kam Chaun Yow Wing Kai Lee 《Journal of the Society for Information Display》2005,13(4):329-334
Abstract— The De Montfort University (DMU) autostereoscopic 3‐D display, intended for television applications, is described. It provides freedom of viewer movement over a typical “living room” sized area, with no restrictions on viewer's head positions. The display is capable of supplying 3‐D images to multiple viewers who do not need to wear special glasses. It operates by producing regions (exit pupils) in the viewing field where either a left or a right image is perceived. The positions of the exit pupils are steered to the viewers' eyes by the use of head tracking. Design issues that became apparent during the construction of a first prototype, and the findings from tests on it, are described. In addition, the current status of a more advanced prototype is reported. 相似文献
15.
Renjing Pei Zheng Geng Kui Ma Mei Zhang Rong Wang 《Journal of the Society for Information Display》2017,25(2):117-125
Crosstalk is a critical defect affecting image quality in multiview lenticular 3D displays. Existing optimization methods require tedious computations and device‐specific optical measurements, and results are often suboptimal. We propose a new method, on the basis of light field acquisition and optimization, for crosstalk reduction in super multiview displays. Theory and algorithms were developed, and experimental validation results showed superior performance. 相似文献
16.
A metric of the 3D image quality of autostereoscopic displays based on optical measurements is proposed. This metric uses each view's luminance contrast, which is defined as the ratio of maximum luminance at each viewing position to total luminance at that position. Conventional metrics of the autostereoscopic display based on crosstalk, which uses “wanted” and “unwanted” lights. However, in case of the multiple‐views‐type autostereoscopic displays, it is difficult to distinguish exactly which lights are wanted lights and which are unwanted lights. This paper assumes that the wanted light has a maximum luminance at the good stereoscopic viewing position, and the unwanted light also has a maximum luminance at the worst pseudo‐stereoscopic viewing position. By using the maximum luminance that is indexed by view number of the autostereoscopic display, the proposed method enables characterizing stereoscopic viewing conditions without using wanted/unwanted light. A 3D image quality metric called “stereo luminance contrast,” the average of both eyes' contrast, is proposed. The effectiveness of the proposed metric is confirmed by the results of optical measurement analyses of different types of autostereoscopic displays, such as the two‐view, scan‐backlight, multi‐view, and integral. 相似文献
17.
Julie Brown Raymond Kwong Yeh‐Jiun Tung Vadim Adamovich Mike Weaver Mike Hack 《Journal of the Society for Information Display》2004,12(3):329-332
Abstract— A key performance attribute for widespread commercialization of OLED technology is achieving maximum power efficiency along with color chromaticity and operational lifetime. Towards this goal, phosphorescent‐OLED (PHOLED) devices have demonstrated potential. Recent PHOLED device results show both excellent device efficiencies and long lifetimes towards the commercialization of low power consumption, full color, passive‐ and active‐matrix (both polysilicon and amorphous‐silicon backplane technologies) OLED displays. 相似文献
18.
Yu‐Mioun Chu Ko‐Wei Chien Han‐Ping D. Shieh Jim‐Min Chang Aaron Hu Yi‐Cheng Shiu Vincent Yang 《Journal of the Society for Information Display》2005,13(10):875-879
Abstract— An autostereoscopic display based on dual‐directional light guides with a fast‐switching liquid‐crystal panel was designed and fabricated to provide better 3‐D perception with image qualities comparable to that of 2‐D displays. With two identical micro‐grooved light guides, each with a light‐controlled ability in one direction, two restricted viewing cones are formed to project pairs of parallax images to the viewer's respective eyes sequentially. Crosstalk of less than 10% located within ±8°–±30° and an LC response time of 7.1 msec for a 1.8‐in. LCD panel can yield acceptable 3‐D perceptions at viewing distance of 5.6–23 cm. Moreover, 2‐D/3‐D compatibility is provided in this module. 相似文献
19.
K. J. Kim H. Kang M. K. Jang B. C. Ahn I. J. Chung T. S. Park J. W. Chang K. I. Lee S. T. Kim 《Journal of the Society for Information Display》2007,15(11):899-903
Abstract— A 42‐in. 2‐D/3‐D switchable display operating in a parallax‐barrier‐type system consisting of liquid‐crystal displays (LCDs) has been developed. The system displays 2‐D images in full resolution, without any degradation to the original 2‐D images, and 3‐D autostereoscopic images with resolutions higher than SVGA with wide viewing zones electrically controlled by the parallax‐barrier system. The system is intended for use in public‐information displays (PIDs), a booming field, and as displays for gaming, medical, and simulation applications. 相似文献
20.
Yoshitomo Isomae Takahiro Ishinabe Yosei Shibata Hideo Fujikake 《Journal of the Society for Information Display》2019,27(4):251-258
We achieved uniform liquid crystal (LC) alignment in lattice‐shaped dielectric walls 1 μm in pitch; this is a prerequisite when driving the individual pixels of spatial light modulators, facilitating the development of practical electronic holographic displays with a wide field of view. In lattice‐shaped dielectric walls, LC alignment becomes unstable, particularly on the bottom and the walls; the LC directors tend to align parallel to the walls. To overcome this problem, we created lattice‐shaped walls featuring partition plates that allow uniform LC alignment. When the plates confine LCs to small regions exhibiting spatial anisotropy, the LC elastic effect and wall anchoring forces align the LC directors parallel to the long anisotropic axis. We found that pixels 0.5 μm × 1.0 μm in pitch formed if the partition plates were sufficiently thick to allow shielding of electric field leakage. 相似文献