首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
A novel hybrid resonant structure which can realize compact multiband bandpass filters (BPFs) and its design method are proposed in this article. The hybrid resonant structure is a dual‐plane structure which is an effective combination of a pair of microstrip stepped impedance resonators on the top layer and two nested dual‐mode defected ground structure resonators on the bottom layer. A triband BPF adopting this hybrid resonant structure was presented which was operating at 2.4/5.7 GHz (wireless local area network application) and 3.5 GHz (worldwide interoperability for microwave access application). The size of this filter is only 0.14λ0 × 0.11λ0. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:690–696, 2014.  相似文献   

2.
    
In this article, the shorted stub loaded stepped‐impedance resonator (SSLSIR) with the individually tunable first even resonant mode and first odd resonant mode is applied to design dual‐, tri‐, and quad‐band bandpass filters (BPFs). The SSLSIR dual‐band BPF with asymmetrical coupling is realized using the first even resonant modes and the first odd resonant modes of a set of SSLSIRs. Then, the high‐impedance feeding lines of SSLSIR dual‐band BPF is modified to produce a new passband, and thus a new tri‐band BPF is realized. The proposed quad‐band BPF consists of two sets of SSLSIRs with symmetrical coupling. Each of the designed circuits occupies a very compact size and has a good in‐band out‐of‐band performance. Good agreements are observed between the simulated and measured results. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:601–609, 2015.  相似文献   

3.
    
A novel half‐mode substrate integrated waveguide (HMSIW) based dual‐band bandpass filter (DBBPF) is proposed. Back to back connected two defected ground structure (DGS) resonators on the top layer of HMSIW cavity constitute the passband with two transmission zeros (TZs) at a lower frequency. The higher modes TE301 and TE302 of HMSIW cavity give the passband response at higher frequency using the mode shifting technique with slot perturbation. The source‐load coupling has been used to create finite frequency TZs to improve the selectivity of the second passband. Therefore, the proposed filter gives two widely separated passbands, center frequencies (CFs) at 5.83 and 18.1 GHz with an attenuation of greater than 10 dB between the passbands. The synthesized filter is fabricated using a low‐cost single layer PCB process, and the measured S‐parameters are almost mimic the EM‐simulation results.  相似文献   

4.
    
In this article, a balanced tri‐band bandpass filter (BPF) with high selectivity and controllable bandwidths is proposed. Two differential‐mode (DM) passbands are formed by applying stepped impedance resonators into the design. Uniform impedance resonators are introduced to realize the third DM passband. Moreover, frequencies and bandwidths of DM passbands can be independently controlled by the lengths of resonators and the gaps between them. In addition, good DM transmission can be realized while high common‐mode suppression is achieved intrinsically without affecting the DM parts, thereby simplifying the design procedure significantly. In order to validate the practicability, a balanced tri‐band BPF operating at 2.45 GHz, 3.5 GHz, and 4.45 GHz is fabricated and designed. A good agreement between the simulated and measured results is observed.  相似文献   

5.
    
This article presents a novel multi‐mode microstrip resonator. Using the even‐odd‐mode method, its resonance characteristics are analyzed and the design graphs are given. Each mode equivalent circuit is a λ/4 stepped impedance resonator (SIR), so the proposed resonator has a compact size and the higher harmonics can be tuned in a wide range. Stub–stub coupling is introduced to split two identical modes and produce two transmission zeros (TZs). Then a tri‐band filter operating at 1.5, 2.4, and 3.8 GHz is designed using the proposed resonator. The three center frequencies and bandwidths can be independently controlled. By tuning the impedance and length ratios of the stubs, wide upper stopband is achieved. Finally, the designed filter is fabricated and measured, and the measured results agree well with the simulated ones. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:559–564, 2016.  相似文献   

6.
    
This article proposes a novel bandpass filter with two controllable passbands using a single quad‐mode silver‐loaded dielectric resonator (DR). The silver plane is inserted in the middle of the cubic DR and two degenerate pairs are used to build the two passbands. Because of the distinct E‐field distributions, the silver plane has significant effect on the degenerate pair (TEx112 and TEy112), whereas another one (TEx111 and TEy111) remains unchanged. With the aid of the silver plane, both center frequencies and bandwidths of the two bands can be controlled independently. To verify the proposed idea, a prototype dual‐band BPF is designed and fabricated. Good agreement between simulated and measured results can be observed.  相似文献   

7.
    
This letter presents a novel miniaturized differential dual‐band bandpass filter (BPF) using a single quad‐mode metal‐loaded dielectric resonator (DR). The differential dual‐band BPF is designed in a single‐cavity configuration with one quad‐mode DR and four feeding probes, featuring compact size. The rectangular DR is directly mounted on the bottom of the metal cavity and covered by a metal plate on the top surface. It allows two pairs of orthogonal modes (LSE10 and LSM10), which can be differentially excited and coupled by introducing proper perturbation for constructing dual‐band differential‐mode frequency response. To validate the proposed idea, a compact differential BPF with good performance using a quad‐mode DR cavity is designed, fabricated, and measured. The simulated and measured results with good agreement are presented.  相似文献   

8.
    
In this article, compact ring‐shaped dielectric resonator antenna (DRA) along with moon‐shaped defected ground structure (DGS) was studied. The proposed antenna was fed by microstrip line shifted from center position, which excited TE01δ mode in ring DRA. Moon‐shaped DGS was acting as a radiator and also reduced the size of proposed antenna by an amount of 14.87% (lower frequency band) and 48.77% (upper frequency band). The proposed antenna was designed to resonate at two different frequencies namely 2.24 and 5.82 GHz with a fractional bandwidth of 30.17% and 22.14%, respectively. Based on optimized design parameters, archetype of antenna structure has been constructed and measured successfully, which shows good agreement with simulated ones. The proposed antenna design was suitable for WLAN (2.4/5.2/5.8 GHz); WiMAX (2.5/5.5 GHz); AMSAT (5.6/5.8 GHz); and WAVE (5.9 GHz) bands. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:503–511, 2016.  相似文献   

9.
    
In this article, a quadruple‐mode stub‐loaded resonator (QM‐SLR) is introduced and its four modes are excited using a simple approach, which can provide a dual‐band behavior. By changing the length of the loaded stubs, independently tunable transmission characteristics of the proposed quadruple‐mode stub‐loaded resonator were extensively described for filter design. Moreover, microwave varactors were adopted to represent the length variation of the loaded stubs for the dual‐band tunability. The equivalent circuit modeling of the open stub with microwave varactor was given and discussed. Then, adopting the compact quadruple‐mode stub‐loaded resonator with three varactors, an independently controllable dual‐band bandpass filter (BPF) was designed, analyzed, and fabricated. Its separated bandwidths and transmission zeros can be tuned independently by changing the applying voltage of the microwave varactors. A good agreement between simulated and measured results verified the design methodology. The proposed filter possesses compact size, simple structure, and excellent dual‐band performances. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:602–608, 2016.  相似文献   

10.
    
A novel modified fractal‐shaped slotted patch antenna employing metasurface at bottom plane along with partial ground has been proposed in this work for dual band applications with significant gain. A 4 × 5 order metasurface has been formed in the ground plane by introducing a periodic combination of two L‐type patches with centered C‐type shaped patch. The top conductor and the ground plane are designed on a 1.6 mm thick FR4 dielectric with the dimension of 28 × 28 mm2. The antenna is designed in such a way that it operates over the dual frequency ranges viz., 1.80 to 5.70 GHz and 10.38 to 10.94 GHz. The maximum return loss of 21 dB has been achieved over 2.60 GHz while the maximum realized gain of 7.16 dBi has been obtained at 10.92 GHz. The designed antenna offers omnidirectional radiation characteristics in the first band while directional radiation characteristics have been observed in the second band. The proposed antenna can be utilized for WiMAX 3.5/5.5 GHz, mobile, radio astronomy, and microimaging in medical analysis.  相似文献   

11.
    
A balanced second‐order dual‐band bandpass filter (BPF) with independently controllable center frequencies and bandwidths based on coupled stepped‐impedance resonators (SIRs) is designed in this article. To obtain a dual‐band differential‐mode (DM) response, two pairs of SIRs with different resonant frequencies are employed in the design. The bandwidths of the two DM passbands can be independently tuned by adjusting the coupling gaps and coupling lengths of the corresponding resonators. In addition, three transmission zeros are realized to enhance the selectivity of the DM passbands. The microstrip‐slotline transition structure is utilized to achieve a wideband common‐mode (CM) suppression. Moreover, the DM responses are independent of the CM ones, which significantly simplify the design procedure. Finally, a balanced dual‐band BPF is designed to validate the design method and a good agreement between the simulated and measured results is observed.  相似文献   

12.
    
In this article, a novel dual‐band differential bandpass filter using (SIRs) is designed. To demonstrate the design ideas, the differential and common mode equivalent half circuits are built and studied. Two resistors are connected between the two ends of the SIRs to consume the power in common mode. A capacitor is connected between the Ground and Center of the SIR to adjust the spurious frequencies, also strength the coupling of the two SIRs. The theoretical analysis shows the second band can be obtained by the proper impedance ratios of the resonances and the capacitor connected to the resonator. Two through ground vias (TGVs) connecting the top and bottom sides of the SIR filter, are used to realize the common mode rejection. To investigate the proposed filter in detail, a set of design equations are derived based on the circuit theory and transmission line theory. A phototype dual‐band differential filter operating at 1.5 and 2.75 GHz has been realized to validate the proposed concept and theory. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:468–473, 2015.  相似文献   

13.
    
This article presents two novel resonators, that is, frequency selecting coupling structure loaded stepped‐impedance resonator (FSCSLSIR) and π‐section loaded FSCSLSIR. The resonator behaviors and guidelines are given to design FSCSLSIR dual‐band bandpass filter (BPF) and π‐section loaded FSCSLSIR triband BPF. The proposed dual‐ and triband BPF have very compact sizes of 0.13 λgd × 0.06 λgd and 0.115 λgt × 0.074 λgt, respectively. Moreover, good return loss, low insertion loss, and high band‐to‐band isolation can be observed, and the proposed FSCSLSIR dual‐band BPF has an ultrawide stopband from 5.79 to 36 GHz. The experimental results are in good agreement with the simulations. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:427–435, 2015.  相似文献   

14.
    
A microstrip patch filtenna inspired by defected ground structure (DGS) is presented in this article. It uses modified split ring resonator and capacitance loaded strip as a radiating element. The presented structure is incorporated with a pair of double U‐shaped DGS (DU‐DGS) to obtain filtering characteristics. The width of DU‐DGS plays a vital role in selecting attenuation poles of the filter as well as for the filtenna circuit. The separation distance between the DU‐DGS also affects the resonant frequency of the structure. Both radiation and filtration can be performed through a single structure, otherwise known as filtenna. The physical size of the proposed filtenna in terms of guided wavelength is 2.465λg × 1.160λg × 0.116λg at 10.8 GHz, and is comparatively less to others reported, so is considered as a superior feature. The presented filtenna possesses impedance bandwidth of 700 and 1800 MHz at 10.8 and 16.6 GHz, which covers standards of X‐ and Ku‐band, respectively. So, this can be referred to as dual band filtenna. The radiation pattern shows omnidirectionality in both E and H planes at resonance.  相似文献   

15.
    
Two novel dual‐band microstrip bandpass filters (BPFs) with multiple transmission zeros are proposed in this article. The dual‐band BPFs with second‐order bandpass responses are due to two λ/4 stepped‐impedance resonators (SIRs). Two passbands (center frequency ratio f s/f0 is 2.36) are realized based on the asymmetric SIRs. The transmission zeros near the passbands can be adjusted conveniently using the stopband transmission characteristic of the open/shorted coupled lines. Two planar microstrip dual‐band BPFs (ε r = 2.65, h = 0.5 mm) with four and six transmission zeros are designed and fabricated. High selectivity and good in‐band performances can be achieved in the proposed filters.  相似文献   

16.
    
A balanced dual‐band bandpass filter (BPF) with independently tunable differential‐mode (DM) frequencies is proposed in this letter. The proposed BPF is composed of complementary split‐ring resonators (CSRRs) etched on the ground and varactors loaded on the resonators. A balanced stepped‐impedance microstrip‐slotline transition structure is introduced to transfer the DM signals successfully and block the common‐mode (CM) signals transmission. Good DM transmission and CM suppression can be achieved. Moreover, by changing the reverse bias voltages of the varactors loaded on coupling CSRRs, two DM resonant frequencies of the proposed balanced BPF can be tuned independently. To verify the feasibility of the design method, a balanced BPF with DM frequency ranging from 0.80 GHz to 1.12 GHz and 1.55 GHz to 2.05 GHz is fabricated and measured. Good agreement between the simulation and measurement results demonstrate the validity of the design.  相似文献   

17.
    
A new antenna structure comprises of defected ground structure with hook‐shaped radiating patch designed for broad impedance bandwidth and axial ratio bandwidth is presented. In the proposed design, hook shaped radiating patch is orthogonally connected with printed strip patch and excited with 50Ω feed line at the upper side of the substrate. At the bottom side, a small rectangular slit is removed from the ground plane just underneath of radiating patch for better impedance matching along with broader bandwidth. The ground plane is defected by etching 3 symmetrical narrow slots for antenna compactness. The optimized antenna prototype is simulated, fabricated, and experimentally tested for far field and axial ratio performances in anechoic chamber. The measured results clearly show that it can yield an impedance bandwidth of approximately 27.60% centered at 2.17 GHz frequency and a 3‐dB AR bandwidth of approximately 25.20%. The measured gain range from 3 to 4.3 dBic in entire 3‐dB AR bandwidth with maximum gain of 4.30 dBic. The cross polar suppression was witnessed better than 15 dB along with wide beamwidth of 85°  相似文献   

18.
    
A novel dual‐mode optimized patch capacitor loaded T‐type resonator is proposed for the design of a dual‐band filter (DBF). The resonator has its lowest even‐ and odd‐mode at the two expected passband frequencies and the first spurious mode far away from the passbands. For tuning of the two sets of coupling strengths for both passbands, open/shorted secondary coupling structures are introduced as a fine‐tuning coupling structure to increase/decrease the primary coupling strength. A four‐pole DBF with passbands centered at 2450 and 3500 MHz, respectively, is proposed and fabricated using the HTS material. The measured results of the filter indicate superior performance and good fitting with the simulation results. The return losses of both passbands and the insertion losses obtained by measurements are greater than 14 dB and less than 0.3 dB, respectively. The stopband rejection exceeds 50 dB up to 8.0 GHz.  相似文献   

19.
    
This article proposes a microstrip dual‐band bandpass filter that uses parallel‐connected open‐loop ring resonators. Compared to many microstrip dual‐band filters, the advantages of using microstrip open‐loop ring resonators are easy calculation (half‐guided‐wavelength), easy fabrication (equal width for all 50‐Ω lines and without grounding holes), and direct connection to external feed lines (reducing insertion loss caused by gap couplings). Another advantage of the filter is an asymmetrical feed on the ring resonator that provides sharp rejections at its adjacent bands. The input and output matches of resonators to the external feed lines are derived using a simple transmission‐line theory. The results of the derivation provide a simple design rule for filter designers. Simulated and measured results are presented with good agreement. The filter has minimum insertion loss of 1.25 dB at 1.85 GHz and 1.6 dB at 2.33 GHz. The 3‐dB fractional bandwidths are 5.9% for the 1.9‐GHz bandpass filter and 4.7% for the 2.4‐GHz bandpass filter, respectively. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2008.  相似文献   

20.
    
In this article, a folded circular waveguide dual‐mode filter without tuning screws is designed for the fifth‐generation (5G) mobile communication system. The folded filter is composed of two stacked circular cavities operated at 3.5 GHz. Each cavity has two resonant modes, which can generate and control two transmission zeroes at specific frequencies. Through a coupling iris, the two single‐cavity filters are connected together, and can control four poles, which helps to expand the 3dB fractional bandwidth to 11.4%. The measured insertion losses are around 0.5 dB in the passband (from 3.4–3.6 GHz). The experiment results show an excellent agreement with the simulation results. Such folded filters have the advantages of very low insertion loss, compact size, high frequency selectivity, and low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号