首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The plasma‐beam alignment procedure earlier developed for the alignment of nematic liquid crystals is successfully extended to ferroelectric liquid crystals (FLC). The highly uniform alignment of the “chevron” structure (before electrical treatment of FLC cells) and “quasi bookshelf” structure (after the electrical treatment) are realized. The contrast of bistable switching larger than 350:1 is achieved. This makes the non‐contact plasma‐beam alignment procedure especially attractive for high‐contrast bistable LCDs on an LCOS base, particularly used in PDA and e‐books. Fast switching and realization of gray scale in the plasma‐beam aligned FLC cells makes this technique also promising for full‐color displays including color LCD TV.  相似文献   

2.
Abstract— Photostability of liquid‐crystal (LC) materials and surface alignment layers was evaluated using a UV lamp and a blue laser beam. Both organic polyimide (PI) and inorganic silicon‐dioxide (SiO2) alignment layers were studied under nitrogen environment. Two commercial TFT‐grade LC mixtures (low‐birefringence MLC‐9200‐000 and high‐birefringence TL‐216) were used for comparisons. Results indicate that SiO2 alignment layers are much more robust than PI layers, and low birefringence LCs are more stable than the high‐birefringence ones. At the He‐Cd laser wavelength (λ = 442 nm), both LC mixtures and SiO2 alignment layers are hardly damaged. To lengthen the lifetime of an LCD projector, inorganic SiO2 alignment layers, high‐optical‐density UV filter, long cutoff‐wavelength blue filter, and short‐conjugation (low birefringence) LC materials should be considered.  相似文献   

3.
Abstract— We have developed a novel method of aligning liquid‐crystal (LC) molecules that employs a layer patterned with hydrophilic and hydrophobic regions fabricated by the photocatalysis of TiO2. This method provides a resolution on the order of 10μm for the alignment of LC molecules without the need for protrusions or patterned electrodes. Using this method, we achieved the continuous multidomain vertical alignment of LC molecules.  相似文献   

4.
The liquid‐crystal (LC) alignment properties of polyamide films exposed to ultraviolet (UV) light were investigated. It was found that the uniform and stable alignment of LC molecules was achieved on films of aromatic polyamides exposed to linearly polarized UV light, even though these polymers contained no common photoreactive group such as cinnamoyl, coumarin, or azo chromophore. The alignment was induced in the same direction, which was perpendicular to the electric‐field vector of the linearly polarized light. The change in the UV‐visible absorption spectra before and after UV exposure suggested that the photoreaction of aromatic polyamide occurred only on the film surface, and that even such a small change in the film was enough to induce uniform alignment of the LC molecules. Furthermore, it was suggested that the photoreaction of this system was accelerated in the presence of oxygen. This paper also deals with the effect of the chemical structure of polymers on their LC photoalignment characteristics, i.e., the sensitivity of the photoinduced LC alignment. As a result, polymer materials with excellent LC photoalignment sensitivity have been determined, which could induce the uniform and unidirectional LC alignment by irradiation of 0.2–0.5 J‐cm?2 of linearly polarized 313‐nm light. In addition, the alignment of the LC cell was found to be thermally and optically stable.  相似文献   

5.
In this work, the very thin layer‐by‐layer (LBL) film that was constructed by dip coating method on indium tin oxide surface can be used in liquid crystal (LC) displays devices. The obtained results indicate that the ultrathin LBL film shows the homeotropic alignment layer, and a uniform vertical alignment of LC molecules was gained very easily. The progress of vertical‐aligned LC cells with a LBL layer was evaluated. The obtained threshold voltage and response time of the LC cell were 2.472 V and 12.5 ms, respectively. So, the competitive performance of the LC cell could allow new sign at a low‐cost budget with rubbing process in LC display technology.  相似文献   

6.
Abstract— A plasma‐beam process, developed for the alignment of liquid crystals (LC) in electro‐optic applications, has been successfully applied to align “non‐standard” LC, such as crystalline materials with LC phases at elevated temperatures and reactive mesogenes. In addition to the high alignment quality of the materials, there is no need for an intermediate layer between the substrate and the LC layer. Furthermore, the construction of our source simplifies the alignment procedure of large‐area rigid substrates and the roll‐to‐roll processing of flexible films. This method opens new horizons for optical retarders and polarizers, as well as anisotropic semiconducting films for organic electronics.  相似文献   

7.
Abstract— The solid‐surface/liquid‐crystal interactions, defining the field‐free alignment of the liquid crystal in conventional liquid‐crystal displays, are playing a vital role in their optical appearance and performance. Nano‐scale changes in the solid‐surface structure induced by light have been recently shown to affect the anchoring strength and the easy‐axis direction. Fine tuning of the anchoring strength is also demonstrated by nano‐structuring of the Langmuir‐Blodgett monolayer employed as liquid‐crystal alignment layers promoting homeotropic orientation. On the basis of nano‐engineering of the surface alignment properties, two novel alignment concepts have been introduced: electrically commanded surfaces (ECS) and high‐performance alignment layers (HiPAL). Nano‐structured polymers related to these concepts have been designed, synthesized, and used as materials for alignment layers in LCDs. ECS materials belong to the category of active alignment materials designed to mediate switching of the liquid crystal, whereas the HiPAL materials make possible the control of the molecular tilt angle in a broad range, from 0° to 90°, and they seem to enable the control of the anchoring strength as well. The nano‐structured alignment materials are strong candidates for implementation in a new generation of advanced liquid‐crystal displays and devices.  相似文献   

8.
The mold fabrication is a critical issue for the development of nanoimprint lithography as an effective low-cost and mass production process.This paper describes the fabrication process developed to fabricate the large area nanoimprint molds on the silicon wafers.The optimization of e-beam exposure dose and pattern design is presented.The overlayer process is developed to improve the field stitching accuracy of e-beam exposure,and around 10 nm field stitching accuracy is obtained.By means of the optimizatio...  相似文献   

9.
Ferroelectric liquid crystal (FLC) with I‐N*‐C* phase sequence is most attractive due to its continuous grey level and fast response; however, the alignment problem of two‐domains defect restricted its application. In this work, one kind of one terminal polymerizable nematic liquid crystal (NLC) mesogen was mixed to FLC to improve its alignment quality. Experimental results showed that mono‐domain uniform alignment of FLC can be obtained with mixing NLC polymer. With optimized concentration, the FLC devices could offer half‐V‐shaped electric‐optical characteristic of driving contrast of 182:1 and fast response of 300 µs even after polymerization. This work can provide one simple and effective method for fabricating stable I‐N*‐C* FLC devices.  相似文献   

10.
A novel nano‐structured photoalignment surface is proposed and demonstrated. Such alignment surface has bistable azimuthal alignment directions for the liquid crystal molecules. The new alignment surface has a structure of stacking a photo‐polymerizable photoalignment polymer on top of a nano‐sized groove surface. The photoalignment polymer and groove surface have different azimuthal alignment directions but the same azimuthal anchoring energies. The fabrication of the nano‐sized groove is based on nano‐imprint lithography. Hence, the size and depth are controllable, where no random process is involved. The alignment surface is robust, stable, reliable, reproducible and suitable for mass manufacturing. Such alignment surface can be applied to fabricate a π/2 bistable twisted nematic (π/2‐BTN) display which has better optical performances than the traditional π‐BTN display.  相似文献   

11.
The ferroelectric liquid crystals, because of their fast electro‐optical response, are one of the most important classes of liquid crystals. Here, in this review, we have summarized the different electro‐optical modes for ferroelectric liquid crystals. Clark–Lagerwall effect (surface stabilized ferroelectric liquid crystal), deformed helix ferroelectric (DHF) effect, electrically suppressed helix (ESH) mode, DHF orientational Kerr effect, and ESH diffraction modes have been discussed. All of the crucial features, that is, optics, electro‐optics, dynamics, and their dependence on material parameters, operational regime, and applications, have been reviewed.  相似文献   

12.
In this article, we disclose electrically suppressed helix ferroelectric liquid crystal (ESHFLC) that is characterized by high optical quality and fast response time at the cost of extremely small driving voltage. These unique features of the ESHFLCs are highly sensitive to the anchoring energy that should be smaller and comparable to the elastic energy of the ferroelectric liquid crystal helix. The photo alignment, which offers good control on the anchoring energy by means of the irradiation energy, is critically important to lock the optimum parameters of the ESHFLC display cell. An example of field sequential color display with the frame frequency of 240 Hz at the driving voltage of 2 V has been demonstrated.  相似文献   

13.
Abstract— Novel anode layer plasma within minimum chamber space was developed for non‐contact alignment process. The plasma‐treated polyimide (PI) surface showed no particle contamination and no micro‐scratches. Surface morphology was investigated by using scanning electron microscope (SEM), an atomic force microscope (AFM), and X‐ray photoemission spectroscopy. The different oxygen‐to‐carbon ratio ([O]/[C] ratio) for XPS spectra indicated a composition change after plasma treatment. Surface pretilt angles were varied from 0 to 2.1° under different plasma exposure times. Finally, a prototype 20.8‐in. QXGA IPS‐mode gray‐scale medical liquid‐crystal display was successfully demonstrated with high contrast ratio, excellent uniformity, and wide viewing angle using this new plasma‐beam‐alignment technique.  相似文献   

14.
《Displays》1987,8(1):17-21
This work is concerned with the investigation of the possibility of increasing the tilt angle in the surface alignment of liquid crystals using rubbed polymer layers. Higher tilt angles (than are currently possible using rubbed polymers) are necessary to exploit the new electro-optic effects reported recently. Tilt angle results are quoted for a range of commercially-available polyimide materials, along with the results of varying the processing parameters, such as temperature and rubbing pressure. The effect of the liquid crystal material used to fill the cells is also described. These results are discussed in terms of changes in the surface properties of the alignment layers.  相似文献   

15.
Abstract— The alignment properties of the azo‐dye photo‐alignment material SD‐1/SDA‐2 on plastic substrates are investigated. Important liquid‐crystal cell parameters, such as azimuthal and polar anchoring energy, pretilt angle, voltage holding ratio, and the corresponding electro‐optical properties are presented. Excellent alignment with high anchoring energy can be achieved with a polarized UV dose less than 1.0 J/cm2. A reflective six‐digit flexible passive‐matrix‐driven TN‐LCD for smart‐card applications showing excellent electro‐optical properties is demonstrated.  相似文献   

16.
We consider the alignment problem where sequences may have masked regions. The bases in masked regions are either unspecified or unknown, and they will be denoted by N. We present an efficient algorithm that finds an optimal local alignment by skipping such masked regions of sequences. Our algorithm works for both the affine gap penalty model and the linear gap penalty model. The time complexity of our algorithm is O((nT)(mS)+vm+wn) time, where n and m are the lengths of given sequences A and B, T and S are the numbers of base N in A and B, and v and w are the numbers of masked regions in A and B, respectively.  相似文献   

17.
Abstract— We have developed an effective method for liquid‐crystal alignment of the large‐area substrates. This method is based on the oblique treatment of the alignment substrates with a “sheet” of accelerated plasma generated by the anode layer source of the “race track” geometry. During this treatment, the substrate or source is cyclically translated in the direction perpendicular to the plasma “sheet.” This method provides planar, tilted, and vertical liquid‐crystal alignment with excellent uniformity and reproducibility and easy axis control in the azimuthal and polar planes.  相似文献   

18.
Abstract— A series of polyimides containing various side chains was synthesized in order to investigate the effect of side chains on the alignment of liquid crystals on the rubbed surface. Here, the side chains include short flexible alkyl spacers and isomeric biphenyl mesogens. The pretilting of liquid‐crystal (LC) molecules was found to be very sensitive to the isomeric structure of biphenyl mesogen end groups as well as the conformation and length of flexible spacers, in addition to the rubbing process. The pretilt angle of LC molecules in the LC cell was achieved in a wide angle range of 8–27°, depending upon the rubbing density as well as the side chains. The high performance in the pretilt and alignment of LCs might be attributed mainly to a strong interaction between the biphenyl mesogen end group in the side chain and the LC molecule in addition to the microgrooves generated in the rubbing direction.  相似文献   

19.
Parametric optimization of sequence alignment   总被引:1,自引:0,他引:1  
Theoptimal alignment or theweighted minimum edit distance between two DNA or amino acid sequences for a given set of weights is computed by classical dynamic programming techniques, and is widely used in molecular biology. However, in DNA and amino acid sequences there is considerable disagreement about how to weight matches, mismatches, insertions/deletions (indels or spaces), and gaps.Parametric sequence alignment is the problem of computing the optimal-valued alignment between two sequences as afunction of variable weights for matches, mismatches, spaces, and gaps. The goal is to partition the parameter space into regions (which are necessarily convex) such that in each region one alignment is optimal throughout and such that the regions are maximal for this property. In this paper we are primarily concerned with the structure of this convex decomposition, and secondarily with the complexity of computing the decomposition. The most striking results are the following: For the special case where only matches, mismatches, and spaces are counted, and where spaces are counted throughout the alignment, we show that the decomposition is surprisingly simple: all regions are infinite; there are at most n2/3 regions; the lines that bound the regions are all of the form =c + (c + 0.5); and the entire decomposition can be found inO(knm) time, wherek is the actual number of regions, andn相似文献   

20.
The electrospray deposition (ESD) method is an established film‐forming technique. To control the pretilt angle on films, we developed two novel ESD methods for spraying two kinds of solutions containing alignment materials. One method is a simultaneous spraying method, while the other is a time‐divided spraying method. When we used the simultaneous‐spraying ESD method, we observed numerous fine liquid crystal (LC) domains with a diameter of approximately 10 µm in the LC cell. These LC domains were substantially smaller than those of LCs fabricated using the conventional ESD method. However, the pretilt angle could not be controlled over a wide range because multiple parameters could not be simultaneously controlled to achieve a stable spray. Using the time‐division ESD method, we controlled the pretilt angle over a wide range from 5° to 40°, with tiny domains. As a demonstration, we fabricated a 270° super‐twisted nematic mode cell using this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号