首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiple-sequential interventions were applied commercially to reduce beef carcass contamination in eight packing plants. The study evaluated microbial populations on animal hides and changes in carcass microbial populations at various stages in the slaughtering process. Sponge swab samples yielded mean (log CFU/100 cm2) total plate counts (TPC), total coliform counts (TCC), and Escherichia coli counts (ECC) on the exterior hide in the ranges of 8.2 to 12.5, 6.0 to 7.9, and 5.5 to 7.5, respectively, while corresponding contamination levels on carcass surfaces, after hide removal but before application of any decontamination intervention, were in the ranges of 6.1 to 9.1, 3.0 to 6.0, and 2.6 to 5.3, respectively. Following the slaughtering process and application of multiple-sequential decontamination interventions that included steam vacuuming, pre-evisceration carcass washing, pre-evisceration organic acid solution rinsing, hot water carcass washing, postevisceration final carcass washing, and postevisceration organic acid solution rinsing, mean TPC, TCC, and ECC on carcass surfaces were 3.8 to 7.1, 1.5 to 3.7, and 1.0 to 3.0, respectively, while corresponding populations following a 24 to 36 h chilling period were 2.3 to 5.3, 0.9 to 1.3, and 0.9, respectively. The results support the concept of using sequential decontamination processes in beef packing plants as a means of improving the microbiological quality of beef carcasses.  相似文献   

2.
The aim of this research was to identify the risk factors associated with the transfer of bacterial contamination from the fleece to the ovine carcass thereby providing the scientific basis for the development and validation of a clean sheep policy. Two hundred sheep in lairage were graded into five categories each consisting of 40 sheep. The categories were as follows; (A) clean and dry; (B) clean and wet; (C) dirty and dry; (D) dirty and wet and (E) visible dags (dung-clotted tufts of wool) categorized by the chief veterinary inspector at the slaughter plant based on the visual inspection of the hygienic status of the fleece. Microbiological evaluations of the carcasses were conducted using swab sampling methods. Total viable counts (TVCs), Enterobacteriaceae and coliform counts were obtained from 40 animals per category at four separate sites (brisket, shoulder, flank and rump) immediately after pelt removal. Statistical analysis of TVC data obtained from the carcass indicated that the dirt level of the fleece had a significant effect on contamination levels when the fleece was dry. Enterobacteriaceae and coliform counts suggest that dirt was a contributing risk factor regardless of wetness or dryness of the animal. The clean sheep policy should therefore differentiate between clean and dirty sheep and mandate additional hygiene measures for the latter.  相似文献   

3.
It is generally assumed that preventing visible contamination of or removing visible contamination from carcasses will enhance the microbiological safety of meat. Visible contamination of carcasses can be reduced by washing or otherwise cleaning animals before slaughter, by dehairing hides before carcasses are skinned or dressed with the skin on, or by performing skinning and eviscerating operations in manners that avoid the transfer of filth from the hide to the meat or the spillage of gut contents. Visible contamination can be removed by washing, trimming, or vacuuming carcasses. The available data appear to indicate that, of the various actions that can be taken to obtain carcasses that are free of visible contamination, only minimizing the visible contamination of meat during skinning and eviscerating operations may also ensure a degree of control over the microbiological contamination of meat. It might be preferable for visible contamination to be controlled largely by superior skinning and eviscerating practices rather than by animal or carcass cleaning treatments, which may not prevent the depositing of bacteria on or the removal of substantial numbers of bacteria from carcasses.  相似文献   

4.
The contamination of beef carcasses with coagulase-positive staphylococci (CPS) was studied at three beef abattoirs (A, B and C). The incidence and the number of CPS were determined on cattle hides immediately after slaughter and on three carcass sites (brisket, flank and round) at different points during processing along the slaughter line. The incidence of CPS on cattle hides ranged from 20 to 68.6%. At abattoir A, 6.5% of the carcasses sampled before evisceration were contaminated with CPS, compared to 40% of the carcasses after evisceration. The incidence on carcasses changed little during further processing; however, after chilling for 72 h, the incidence increased to 83%. After evisceration, the brisket and flank areas were more often contaminated than the round. A similar pattern of contamination was observed at abattoir B. At abattoir C, 26.7% of the samples collected before evisceration were contaminated and this fell to 16.7% after evisceration. After chilling for 72 h, the incidence of carcass contamination with CPS increased to 46.7%. The average number of CPS on contaminated carcasses prior to and after overnight chilling was less than 50 colony-forming units (cfu)/cm2 and, after weekend chilling, increased to 64 and 112 cfu/cm2 in abattoirs A and B, respectively. Of the isolates tested, 71.4% produced staphylococcal enterotoxin and 21% could not be classified phenotypically. The hands of workers and environmental sites associated with the evisceration process were examined for CPS at abattoir A. Hands were heavily contaminated and were the likely source of CPS contamination at this abattoir.  相似文献   

5.
The meat industry in Norway has developed national guidelines for Good Hygiene Practices for slaughtering and skinning, based on categorisation of animals. These include shearing sheep and lambs in the abattoirs immediately before slaughter. The aim of this study was to investigate microbiological carcass contamination associated with: (i) different shearing regimes; (ii) fleece cleanliness; and (iii) the slaughter process. In addition, the efficacy of the national guidelines in reducing microbial contamination was evaluated. A total of 280 swab samples were collected from the brisket areas (100 cm(2)) of 140 naturally contaminated lamb carcasses in a commercial abattoir. Half the samples were collected at skinning of brisket areas at the start of the slaughter-line and half of them were collected at the end of slaughter-line, just before chilling. The lambs were divided into four groups (n=35) according to the duration of the period between shearing and slaughter: (i) 0 days (shorn at the abattoir immediately before slaughter); (ii) three days; (iii) seven days; and (iv) not shorn. Mean log colony forming units (CFU) per 100 cm(2) at skinning were 5.78 and 6.95 for aerobic plate count (APC) (P<0.05), 1.65 and 2.78 for Escherichia coli (P<0.05) for shorn and unshorn lambs, respectively. For shorn lambs, divided according to the period between shearing and slaughter, the mean log CFU per 100 cm(2) were 5.45, 5.75, 6.12 (APC) and 1.77, 1.46, 1.71 (E. coli) for the 0-days, 3-days and 7-days groups, respectively (P<0.05 for the difference between 0- and 7-days groups in APC results). A four-category scale (0-3) was used for assessing fleece cleanliness before skinning. Visually clean lambs (score '0') had lower levels of APC on the carcass surfaces than those categorised as dirty (score '2-3') (P<0.05). The carcasses at the end of the slaughter-line had lower levels of APC than they had at skinning. However, the statistical significant reduction of E. coli on carcass surfaces at skinning point for shorn lambs, were impaired and no longer significantly different from the unshorn group at the end of the slaughter-line. The increased E. coli level at the end of the slaughter-line might be explained by weaknesses related to slaughter hygiene in particular suboptimal evisceration in the abattoir which was used as a basis for our trial, and thus the national guidelines concerning shearing had not the fully intended effect on reducing microbial carcass contamination.  相似文献   

6.
The objective of this study was to determine the source(s) of Salmonella contamination in ground beef. One hundred dairy cows were harvested in a U.S. commercial beef processing plant. Samples of hides, carcasses after hide removal and before exposure to antimicrobial intervention, carcasses after all antimicrobial interventions, superficial cervical lymph nodes from the chuck, trim, ground beef, and air were obtained. Ninety-six percent of the hide samples, 47% of the carcasses before intervention, 18% of the lymph nodes, 7.14% of the trim, and 1.67% of the ground beef samples were positive for Salmonella. None of the samples obtained from the carcasses after the full complement of interventions and none of the air samples were positive for Salmonella. All Salmonella-positive samples were subjected to pulsed-field gel electrophoresis, and eight DNA Xba I restriction patterns were identified. The majority of isolates had one of two restriction digest patterns. The strain isolated from ground beef had the same pattern as the strains isolated from hides and from carcasses immediately after hide removal. The Salmonella isolates from trim samples and lymph nodes also had the same restriction digest pattern. These results indicate that hide and lymph nodes are the most likely sources of Salmonella in ground beef. Dressing practices that effectively reduce or eliminate the transfer of bacteria from hide to carcass and elimination of lymph nodes as a component of raw ground beef should be considered as measures to reduce Salmonella contamination of ground beef. Because total elimination of lymph nodes from ground beef is not possible, other approaches should be explored. Easily accessible lymph nodes could be screened for Salmonella very early in the slaughter process. When the results are positive for Salmonella, the corresponding carcasses should be fabricated separately at the end of the production run, and the trim from these carcasses should be subjected to a treatment that destroys Salmonella.  相似文献   

7.
Preevisceration carcass washing prior to bung bagging during beef slaughter may allow pooling of wash water in the rectal area and consequent spread of potential pathogens. The objective of this study was to compare protocols for bung bagging after preevisceration washing with an alternative method for bung bagging before preevisceration washing for the potential to spread enterohemorrhagic Escherichia coli, E. coli O157:H7, and Salmonella on carcass surfaces. The study evaluated incidence rates of pathogens in preevisceration wash water (10 ml) samples (n = 120) and on surface (100 cm2) sponge samples (n = 120) in the immediate bung region when bagging occurred before (prewash bagging) and after (postwash bagging) preevisceration washing. Surface sampling from postwash bagging yielded incidence rates of 58.3, 5, and 8.3%, whereas wash water sampling yielded 28.3, 1.7, and 5% for enterohemorrhagic Escherichia coli, E. coli O157:H7, and Salmonella, respectively. Surface sampling from prewash bagging yielded incidence rates of 35, 1.7, and 0%, whereas wash water sampling yielded 18.3, 0, and 8.3% for enterohemorrhagic Escherichia coli, E. coli O157:H7, and Salmonella, respectively. Results of this research indicate that the rectal area is a significant source of pathogen contamination on carcasses and that wash water is an important mechanism for potential transfer of pathogen contamination from the rectal area. Results from this study suggest that bung bagging, as proposed in this study, before (prewash bagging) rather than after (postwash bagging) preevisceration washing was generally more effective in controlling pathogen contamination and potential spread from the rectal area of carcasses.  相似文献   

8.
The study was carried out to assess the level of beef carcass contamination with Escherichia coli including O157 strains before and after washing with water. Samples of water used for washing carcasses were collected and thirty beef carcasses were swabbed within a period of one month in each of three abattoirs located in North-Western states of Nigeria. E. coli were enumerated as indicator organisms. Using conventional biochemical tests, the isolation rate of E. coli in the 120 swab samples collected in each abattoir from external and internal surfaces of the carcasses was 58.3% at Kano abattoir, 70.8% at Sokoto abattoir, while 76.7% was recorded at Zango abattoir. E. coli counts from external and internal surfaces of the carcasses were enumerated as mean log and ranged between 4.3 Log(10) and 4.6 Log(10) cfu/cm(2) before washing, while the values were 4.6 Log(10) and 4.9 Log(10) cfu/cm(2) after washing. Data analysis revealed that the increase in E. coli counts after washing carcasses with water was statistically significant (P<0.05) in all the abattoirs. However, there was no statistically significant difference (P>0.05) between the 3 abattoirs in mean log of E. coli counts from external surfaces of carcass after washing. E. coli O157 was identified from both the water and surfaces of carcasses using Latex agglutination kit. A prevalence of 2.8% of E. coli O157 was detected in 360 swab samples from 90 beef carcasses examined. E. coli counts from water used in washing carcasses were between 22 and 120 cfu/100 ml. Of the 72 water samples, 3(4.2%) were positive for E. coli O157. In conclusion, there was increased contamination of carcasses during processing and water used in washing carcasses might have contributed to carcass contamination in all the abattoirs studied due to use of non-potable water.  相似文献   

9.
The hides of cattle are the primary source of pathogens such as Escherichia coli O157:H7 that contaminate preevisceration carcasses during commercial beef processing. A number of interventions that reduce hide contamination and subsequent carcass contamination are currently being developed. The objective of this study was to determine the efficacy of ozonated and electrolyzed oxidizing (EO) waters to decontaminate beef hides and to compare these treatments with similar washing in water without the active antimicrobial compounds. Cattle hides draped over barrels were used as the model system. Ozonated water (2 ppm) was applied at 4,800 kPa (700 lb in2) and 15 degrees C for 10 s. Alkaline EO water and acidic EO water were sequentially applied at 60 degrees C for 10 s at 4,800 and 1,700 kPa (250 lb in2), respectively. Treatment using ozonated water reduced hide aerobic plate counts by 2.1 log CFU/100 cm2 and reduced Enterobacteriaceae counts by 3.4 log CFU/100 cm2. EO water treatment reduced aerobic plate counts by 3.5 log CFU/100 cm2 and reduced Enterobacteriaceae counts by 4.3 log CFU/100 cm2. Water controls that matched the wash conditions of the ozonated and EO treatments reduced aerobic plate counts by only 0.5 and 1.0 log CFU/100 cm2, respectively, and each reduced Enterobacteriaceae counts by 0.9 log CFU/100 cm2. The prevalence of E. coli O157 on hides was reduced from 89 to 31% following treatment with ozonated water and from 82 to 35% following EO water treatment. Control wash treatments had no significant effect on the prevalence of E. coli O157:H7. These results demonstrate that ozonated and EO waters can be used to decontaminate hides during processing and may be viable treatments for significantly reducing pathogen loads on beef hides, thereby reducing pathogens on beef carcasses.  相似文献   

10.
The objective of this experiment was to test the hypothesis that cleaning cattle hides by removing hair and extraneous matter before hide removal would result in improved microbiological quality of carcasses in commercial beef processing plants. To test this hypothesis, we examined the effect of chemical dehairing of cattle hides on the prevalence of Escherichia coli O157:H7 and the levels of aerobic bacteria and Enterobacteriaceae on carcasses. Samples from 240 control (conventionally processed) and 240 treated (chemically dehaired before hide removal) hides (immediately after stunning but before treatment) and preevisceration carcasses (immediately after hide removal) were obtained from four visits to a commercial beef processing plant. Total aerobic plate counts (APC) and Enterobacteriaceae counts (EBC) were not (P > 0.05) different between cattle designated for chemical dehairing (8.1 and 5.9 log CFU/100 cm2 for APC and EBC, respectively) and cattle designated for conventional processing (8.0 and 5.7 log CFU/100 cm2 for APC and EBC, respectively). However, E. coli O157:H7 hide prevalence was higher (P < 0.05) for the control group than for the treated group (67% versus 88%). In contrast to hides, the bacterial levels were lower (P < 0.05) on the treated (3.5 and 1.4 log CFU/100 cm2 for APC and EBC) than the control (5.5 and 3.2 log CFU/100 cm2 for APC and EBC) preevisceration carcasses. Prevalence of E. coli O157:H7 was lower (P > 0.05) on treated than on control preevisceration carcasses (1% versus 50%). These data indicate that chemical dehairing of cattle hides is an effective intervention to reduce the incidence of hide-to-carcass contamination with pathogens. The data also imply that any effective hide intervention process incorporated into beef processing procedures would significantly reduce carcass contamination by E. coli O157:H7.  相似文献   

11.
Changes in bacterial counts on beef carcasses at specific points during slaughter and fabrication were determined, and the effectiveness of nisin, lactic acid, and a combination of the lactic acid and nisin in reducing levels of microbiological contamination was assessed. Swab samples were obtained from the surfaces of randomly selected beef carcasses. Carcasses were swabbed from the neck, brisket, and renal site after skinning, splitting, and washing. Treatments involving lactic acid (1.5%), nisin (500 IU/ml), or a mixture of nisin and lactic acid were applied after the neck area was washed. A control group was not sprayed. Results indicated that the highest prevalence of aerobic plate counts (APCs), total coliforms, and Escherichia coli was found in the neck site after splitting, and the lowest level of microbial contamination was found after skinning. Washing with water did not significantly reduce the bacterial load. The largest reduction in APCs, total coliforms, and E. coli occurred on carcasses treated with a mixture of nisin and lactic acid. A mixture of nisin and lactic acid can be applied to beef carcasses through spray washing and can reduce bacterial populations by 2 log units.  相似文献   

12.
《Food microbiology》2004,21(5):589-596
This study investigated the relationship between aerial and beef carcass contamination and examined the effect of abattoir design and time of slaughter on the aerobiology of slaughter operations in two commercial beef abattoirs. A dual head impaction air sampler and swab samples taken from 100 cm2 of the brisket of beef carcasses, were used to examine Total Viable, Psychrotrophic, Enterobacteriaceae and Pseudomonad numbers. In Abattoir A, with a straight-line single-floor design, airborne bacterial numbers were generally lower in the “clean” than in the “dirty” area of the plant. In Abattoir B, which had a serpentine two-floor design, this trend was generally reversed. Both abattoirs displayed a similar pattern in airborne counts over the production day, with numbers generally being lower before slaughter, than in the morning and afternoon. Correlations between aerial and carcass contamination for each of the bacterial groups on the slaughter line in Abattoirs A and B were poor. The data suggest that it is difficult to make a definitive evaluation of the relationship between aerial and carcass contamination levels. Methods currently used to determine the relationship between aerial and carcass contamination need to be reconsidered.  相似文献   

13.
Two series of experiments were carried out to investigate methods of reducing contamination of lamb carcasses in low-throughput abattoirs, where cradle dressing is normally employed. In the first series, cradle design and pelt removal procedure were investigated, and a method was developed for assessing gross visible contamination. Significant improvements in microbiological and gross visible contamination (P < 0.01) were achieved by procedural changes only; modifications to the cradle design had no effect. In the second series of experiments, two improved methods of pelt removal and the effect of hand washing prior to carcass contact during the pelt removal procedure were investigated. The improved methods comprised a Frame system, in which the pelt was removed in a manner similar to that in a high-throughput inverted line, and a Hybrid system, in which the pelt was removed from the forequarters on a conventional cradle before the carcass was suspended in an "inverted" vertical position for removal of the pelt from the abdomen and hindquarters. The results of microbiological and gross visible contamination from these methods, with and without hand washing, were compared with the conventional Cradle method of pelt removal. Both the Hybrid and Frame systems had significantly less microbiological and gross visible contamination (P < 0.01). However, hand washing had no significant effect on the level of carcass contamination for all three methods of pelt removal. Greatest reductions in microbiological and gross visible contamination were achieved using techniques that minimized hand contact with the carcass during pelt removal by adoption of inverted dressing procedures. Equipment redesign did not reduce carcass contamination.  相似文献   

14.
To determine the principal points of microbial contamination of carcasses during beef carcass dressing in Northern Ireland, 190 carcasses were sampled by swabbing 1,000 cm2 of the brisket. A detailed survey of one abattoir was initially conducted, with sampling of a total of 100 carcasses immediately after hide removal (H), after carcass splitting (S), and immediately after washing (W) before dispatch to the chiller. The total bacterial counts after incubation at both 22 and 37 degrees C indicated that there was no significant increase in the numbers of bacteria after the first sampling point, H (P > 0.05). To determine whether this was the case in the majority of Northern Ireland abattoirs, 15 carcasses were then sampled at each of an additional six abattoirs, at points H and W only. Total bacterial counts were significantly higher (P < 0.05) at H than at W, indicating that hide pulling was the major point of bacterial contamination of beef carcasses and hence a critical control point for the final microbiological quality of the carcasses. Mean counts of Enterobacteriaceae at both incubation temperatures were very low (< 10 CFU/cm2) but were higher at W than at H, probably indicating that washing was redistributing bacteria from the posterior to the anterior region.  相似文献   

15.
Harborage of Escherichia coli O157:H7 and Salmonella on animal hides at slaughter is the main source of beef carcass contamination during processing. Given this finding, interventions have been designed and implemented to target the hides of cattle following entry into beef processing plants. Previous interventions targeting hides have not been suitable for all beef processing plants because of cost and space restrictions. In this study, a hide wash cabinet was evaluated to determine whether it was more amenable to widespread use in the beef processing industry, especially for small and medium-size plants. Overall, 101 (35.1%) of 288 beef cattle hides sampled before entry into the hide wash cabinet harbored E. coli O157:H7 at or above the limit of detection (40 CFU/100 cm2). After passage through the hide wash cabinet, only 38 (13.2%) of 288 hides had E. coli O157:H7 levels > or =40 CFU/100 cm2. Before the hide wash cabinet, 50 (17%) of 288 hides harbored E. coli O157:H7 at levels above 100 CFU/100 cm2, with one sample as high as 20,000 CFU/100 cm2. In contrast, only 14 (5%) of 288 hides had E. coli O157:H7 levels above 100 CFU/100 cm2 after hide washing, with the highest being 2000 CFU/100 cm2. These same trends also were found for Salmonella before and after hide washing. These results indicate that the hide wash cabinet described in this study was effective and should provide small and medium-size processing plants with an affordable hide wash intervention strategy.  相似文献   

16.
为探明拉萨地区牦牛胴体屠宰过程中的微生物污染程度,明确微生物关键控制点,对拉萨地区某具有代表 性的规范屠宰企业屠宰前车间空气中的微生物、各屠宰工艺环节牦牛胴体表面以及人员用具的菌落总数和大肠菌群 数量进行测定。结果表明:屠宰前车间微生物污染严重;随着剥皮和去内脏工艺的进行,牦牛胴体的菌落总数和大 肠菌群数量显著增加;斧劈四分体后胴体的菌落总数和大肠菌群数量均显著高于剥皮和去内脏后;牦牛屠宰过程中 微生物的主要来源是垫板和斧头。  相似文献   

17.
Raw beef producers currently face the problem of Escherichia coli O157:H7 surface contamination of beef carcasses that can lead to product adulteration. Although carcass interventions are in place, elimination of E. coli O157:H7 from every potential hiding place on the surfaces of a beef carcass is not technologically feasible. Therefore, E. coli O157:H7 on beef carcasses might further contaminate the surfaces of beef trimmings. With the use of case scenarios from nine commercial processing facilities, we present a process control and statistical sampling approach for monitoring beef trimmings to divert contaminated lots of the trimmings from the raw ground beef supply chain.  相似文献   

18.
National carcass classification records for cattle, sheep and pigs were used as a basis for estimating the body composition of British livestock slaughter populations. The tissue percentages of carcasses in each classification fatness range were estimated from regression equations constructed using data from breed comparison trials and other sources. The lipid and protein contents of the tissues were then estimated using regression equations from body composition studies. The mean carcass composition, and lean and fat production from current populations (1984) were compared with those of ten years ago. There has been an important increase of 20 kg (8%) in carcass weight for beef but no change in carcass composition. The average beef carcass in 1984 was estimated to contain 23% lipid (inclusive of lipid in perinephric and retroperitoneal fat). The weight of sheep carcasses has fallen by 0·6 kg (3 1 2% ) since 1977 without any appreciable change in carcass composition. The average sheep carcass in 1984 was estimated to contain 24% lipid. The lipid content of the average pig carcass was estimated to have fallen significantly from 27% in 1975 to 22% in 1984, with a small increase in carcass weight.  相似文献   

19.
The hides of cattle are the source of Escherichia coli O157:H7 that contaminates beef carcasses during commercial beef processing. Therefore, effective interventions that reduce hide contamination should reduce subsequent carcass contamination. The first objective of this study was to identify the most effective reagents for decontamination of beef hides. Cattle hides draped over barrels were used for in vitro experiments to compare the efficacy of washes using 1.6% sodium hydroxide, 4% trisodium phosphate, 4% chlorofoam, or 4% phosphoric acid, each followed by a rinse step using either water or acidified (pH 7.0) chlorine at 200 or 500 ppm. All treatments using a water rinse reduced hide coliform counts by 1.5 to 2.5 log CFU/ 100 cm2. Compared with water rinses, 200 and 500 ppm acidified chlorine rinses increased efficacy by approximately 1.0 and 2.0 log CFU/100 cm2, respectively. Vacuuming of the treated areas to remove excess liquid improved hide cleanliness by an average of an additional 1.0 log CFU/100 cm2. The second objective was to evaluate the use of an on-line hide-wash cabinet that used a sodium hydroxide wash and a chlorinated (1 ppm) water rinse. Hides sampled before entering and after exiting the cabinet had aerobic plate counts and Enterobacteriaceae counts that were reduced by 2.1 and 3.4 log CFU/100 cm2, respectively, and the prevalence of E. coli O157 on hides was reduced from 44 to 17% when the cabinet was in use. Preevisceration carcass aerobic plate counts and Enterobacteriaceae counts were both reduced by 0.8 log CFU/100 cm2, and the prevalence of E. coli O157 on preevisceration carcasses was reduced from 17 to 2% when the cabinet was in use. These results support decontamination of hides as an effective means to reduce pathogen contamination of cattle carcasses during processing.  相似文献   

20.
The purpose of this study was to investigate carriage and transfer of verocytotoxigenic Escherichia coli (VTEC) O157, O26, O111, O103 and O145 from fleece to dressed carcasses of 500 sheep, and to establish the virulence potential of recovered VTEC. Individual sheep were tracked and sampled (10 g fleece, full carcass swab) through the slaughter process. Samples were examined for the presence of verotoxin (vt1 and vt2) genes using a duplex real-time PCR assay and positive samples were further screened for the presence of the above five serogroups by real-time PCR. VTEC cells were recovered from PCR positive samples by serogroup specific immunomagnetic separation and confirmed by serogroup specific latex agglutination and PCR. Isolates were subject to a virulence screen (vt1, vt2, eaeA and hlyA) by PCR and isolates carrying vt genes were examined by Pulsed-Field Gel Electrophoresis (PFGE). VTEC O26 was recovered from 5/500 (1.0%) fleece and 2/500 (0.4%) carcass samples. VTEC O157 was isolated from 4/500 (0.8%) fleece samples and 3/500 (0.6%) carcass samples. E. coli O103 was recovered from 84/500 (16.8%) fleece and 68/500 (13.6%) carcasses, but only one E. coli O103 isolate (0.2%) carried vt genes. E. coli O145 was recovered from one fleece sample, but did not carry vt genes. E. coli O111 was not detected in any samples. For the four serogroups recovered, the direct transfer from fleece to carcass was not observed with PFGE showing that VTEC O26 isolates from a matched fleece/carcass “pair” were not identical. This study shows that while VTEC O157 are being carried by sheep presented for slaughter in Ireland, other potentially clinically significant verotoxin producing strains (particularly VTEC O26) are emerging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号