首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interval optimization algorithm shows great advantages in bound constrained global optimization. An interval algorithm is presented in this article based on a new selection criterion. The selection criterion is proposed based on numerical experiments and the parameter pf* designed by Casado, Garcia and Csendes in 2000. The proposed criterion at each iteration selects some intervals of which the number is not greater than a constant so that the possible memory problem during the implementation of the algorithm is avoided and the running time of the algorithm is decreased, when the dimension of the problem is increasing. Based on the selection criterion, the proposed algorithm is implemented for a wide set of tested functions which includes easy and hard problems. Numerical experiments show that the proposed algorithm is efficient.  相似文献   

2.
A novel infill sampling criterion is proposed for efficient estimation of the global robust optimum of expensive computer simulation based problems. The algorithm is especially geared towards addressing problems that are affected by uncertainties in design variables and problem parameters. The method is based on constructing metamodels using Kriging and adaptively sampling the response surface via a principle of expected improvement adapted for robust optimization. Several numerical examples and an engineering case study are used to demonstrate the ability of the algorithm to estimate the global robust optimum using a limited number of expensive function evaluations.  相似文献   

3.
This article presents the performance of a very recently proposed Jaya algorithm on a class of constrained design optimization problems. The distinct feature of this algorithm is that it does not have any algorithm-specific control parameters and hence the burden of tuning the control parameters is minimized. The performance of the proposed Jaya algorithm is tested on 21 benchmark problems related to constrained design optimization. In addition to the 21 benchmark problems, the performance of the algorithm is investigated on four constrained mechanical design problems, i.e. robot gripper, multiple disc clutch brake, hydrostatic thrust bearing and rolling element bearing. The computational results reveal that the Jaya algorithm is superior to or competitive with other optimization algorithms for the problems considered.  相似文献   

4.
This article presents a global optimization algorithm via the extension of the DIviding RECTangles (DIRECT) scheme to handle problems with computationally expensive simulations efficiently. The new optimization strategy improves the regular partition scheme of DIRECT to a flexible irregular partition scheme in order to utilize information from irregular points. The metamodelling technique is introduced to work with the flexible partition scheme to speed up the convergence, which is meaningful for simulation-based problems. Comparative results on eight representative benchmark problems and an engineering application with some existing global optimization algorithms indicate that the proposed global optimization strategy is promising for simulation-based problems in terms of efficiency and accuracy.  相似文献   

5.
Finding a suitable solution to an optimization problem designed in science is a major challenge. Therefore, these must be addressed utilizing proper approaches. Based on a random search space, optimization algorithms can find acceptable solutions to problems. Archery Algorithm (AA) is a new stochastic approach for addressing optimization problems that is discussed in this study. The fundamental idea of developing the suggested AA is to imitate the archer's shooting behavior toward the target panel. The proposed algorithm updates the location of each member of the population in each dimension of the search space by a member randomly marked by the archer. The AA is mathematically described, and its capacity to solve optimization problems is evaluated on twenty-three distinct types of objective functions. Furthermore, the proposed algorithm's performance is compared vs. eight approaches, including teaching-learning based optimization, marine predators algorithm, genetic algorithm, grey wolf optimization, particle swarm optimization, whale optimization algorithm, gravitational search algorithm, and tunicate swarm algorithm. According to the simulation findings, the AA has a good capacity to tackle optimization issues in both unimodal and multimodal scenarios, and it can give adequate quasi-optimal solutions to these problems. The analysis and comparison of competing algorithms’ performance with the proposed algorithm demonstrates the superiority and competitiveness of the AA.  相似文献   

6.
Abstract

In this study we present an efficient global optimization method, DIviding RECTangle (DIRECT) algorithm, for parametric analysis of dynamic systems. In a bounded constrained problem the DIRECT algorithm explores multiple potentially optimal subspaces in one search. The algorithm also eliminates the need for derivative calculations which are required in some efficient gradient‐based methods. In this study the first optimization example is to find the dynamic parameters of a tennis racket. The second example is a biomechanical parametric study of a heel‐toe running model governed by six factors. The effectiveness of the DIRECT algorithm is compared with a genetic algorithm in an analysis of heel‐toe running. The result shows that the DIRECT algorithm obtains an improved result in 83% less execution time. It is demonstrated that the straightforward DIRECT algorithm provides a general procedure for solving global optimization problems efficiently and confidently.  相似文献   

7.
This article presents a new multi-objective model for a facility location problem with congestion and pricing policies. This model considers situations in which immobile service facilities are congested by a stochastic demand following M/M/m/k queues. The presented model belongs to the class of mixed-integer nonlinear programming models and NP-hard problems. To solve such a hard model, a new multi-objective optimization algorithm based on a vibration theory, namely multi-objective vibration damping optimization (MOVDO), is developed. In order to tune the algorithms parameters, the Taguchi approach using a response metric is implemented. The computational results are compared with those of the non-dominated ranking genetic algorithm and non-dominated sorting genetic algorithm. The outputs demonstrate the robustness of the proposed MOVDO in large-sized problems.  相似文献   

8.
Jenn-long Liu 《工程优选》2013,45(5):499-519
A classical simulated annealing (SA) method is a generic probabilistic and heuristic approach to solving global optimization problems. It uses a stochastic process based on probability, rather than a deterministic procedure, to seek the minima or maxima in the solution space. Although the classical SA method can find the optimal solution to most linear and nonlinear optimization problems, the algorithm always requires numerous numerical iterations to yield a good solution. The method also usually fails to achieve optimal solutions to large parameter optimization problems. This study incorporates well-known fractional factorial analysis, which involves several factorial experiments based on orthogonal tables to extract intelligently the best combination of factors, with the classical SA to enhance the numerical convergence and optimal solution. The novel combination of the classical SA and fractional factorial analysis is termed the orthogonal SA herein. This study also introduces a dynamic penalty function to handle constrained optimization problems. The performance of the proposed orthogonal SA method is evaluated by computing several representative global optimization problems such as multi-modal functions, noise-corrupted data fitting, nonlinear dynamic control, and large parameter optimization problems. The numerical results show that the proposed orthogonal SA method markedly outperforms the classical SA in solving global optimization problems with linear or nonlinear objective functions. Additionally, this study addressed two widely used nonlinear functions, proposed by Keane and Himmelblau to examine the effectiveness of the orthogonal SA method and the presented penalty function when applied to the constrained problems. Moreover, the orthogonal SA method is applied to two engineering optimization design problems, including the designs of a welded beam and a coil compression spring, to evaluate the capacity of the method for practical engineering design. The computational results show that the proposed orthogonal SA method is effective in determining the optimal design variables and the value of objective function.  相似文献   

9.
模拟退火算法是一种启发式算法,是受到加热紧缩的退火过程所启发而提出来一种求解组合优化问题的一种逼近算法。算法要优于传统的贪婪算法,避免了陷入局部最优的可能,从而达到全局最优解。在物流配送网络中经常为有一些寻求最短路径等问题出现,为了能够达到最短、最优、最经济等,需要进行物流配送路径寻优。文中采用模拟退火算法进行一个示例的验证,效果证明可行。  相似文献   

10.
Shuo Xu  Ze Ji  Duc Truong Pham  Fan Yu 《工程优选》2013,45(11):1141-1159
The simultaneous mission assignment and home allocation for hospital service robots studied is a Multidimensional Assignment Problem (MAP) with multiobjectives and multiconstraints. A population-based metaheuristic, the Binary Bees Algorithm (BBA), is proposed to optimize this NP-hard problem. Inspired by the foraging mechanism of honeybees, the BBA's most important feature is an explicit functional partitioning between global search and local search for exploration and exploitation, respectively. Its key parts consist of adaptive global search, three-step elitism selection (constraint handling, non-dominated solutions selection, and diversity preservation), and elites-centred local search within a Hamming neighbourhood. Two comparative experiments were conducted to investigate its single objective optimization, optimization effectiveness (indexed by the S-metric and C-metric) and optimization efficiency (indexed by computational burden and CPU time) in detail. The BBA outperformed its competitors in almost all the quantitative indices. Hence, the above overall scheme, and particularly the searching history-adapted global search strategy was validated.  相似文献   

11.
This paper deals with topology optimization of discretized continuum structures. It is shown that a large class of non‐linear 0–1 topology optimization problems, including stress‐ and displacement‐constrained minimum weight problems, can equivalently be modelled as linear mixed 0–1 programs. The modelling approach is applied to some test problems which are solved to global optimality. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
为了提高约束优化问题的求解精度和收敛速度,提出求解约束优化问题的改进布谷鸟搜索算法。首先分析了基本布谷鸟搜索算法全局搜索和局部搜索过程中的不足,对其中全局搜索和局部搜索迭代公式进行重新定义,然后以一定概率在最优解附近进行搜索。对12个标准约束优化问题和4个工程约束优化问题进行测试并与多种算法进行对比,实验结果和统计分析表明所提算法在求解约束优化问题上具有较强的优越性。  相似文献   

13.
Ning Gan  Yulin Xiong  Xiang Hong 《工程优选》2018,50(12):2054-2070
This article proposes a new algorithm for topological optimization under dynamic loading which combines cellular automata with bi-directional evolutionary structural optimization (BESO). The local rules of cellular automata are used to update the design variables, which avoids the difficulty of obtaining gradient information under nonlinear collision conditions. The intermediate-density design problem of hybrid cellular automata is solved using the BESO concept of 0–1 binary discrete variables. Some improvement strategies are also proposed for the hybrid algorithm to solve certain problems in nonlinear topological optimization, e.g. numerical oscillation. Some typical examples of crashworthiness problems are provided to illustrate the efficiency of the proposed method and its ability to find the final optimal solution. Finally, numerical results obtained using the proposed algorithms are compared with reference examples taken from the literature. The results show that the hybrid method is computationally efficient and stable.  相似文献   

14.
For the past two decades, nature‐inspired optimization algorithms have gained enormous popularity among the researchers. On the other hand, complex system reliability optimization problems, which are nonlinear programming problems in nature, are proved to be non‐deterministic polynomial‐time hard (NP‐hard) from a computational point of view. In this work, few complex reliability optimization problems are solved by using a very recent nature‐inspired metaheuristic called gray wolf optimizer (GWO) algorithm. GWO mimics the chasing, hunting, and the hierarchal behavior of gray wolves. The results obtained by GWO are compared with those of some recent and popular metaheuristic such as the cuckoo search algorithm, particle swarm optimization, ant colony optimization, and simulated annealing. This comparative study shows that the results obtained by GWO are either superior or competitive to the results that have been obtained by these well‐known metaheuristic mentioned earlier. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
This study compares two novel nature-inspired algorithms developed based on cosmology for discrete sizing optimization of structures. The first metaheuristic is the black hole, which is inspired by the black hole phenomenon. The second one is the multiverse, and the main inspiration for this algorithm is based on three concepts in cosmology: white holes, black holes and wormholes. Moreover, an improved version of each algorithm, termed improved black hole (IBH) and improved multiverse (IMV), is proposed to overcome the defects of their original versions in tackling the discrete sizing structural optimization problems. Three types of structure, i.e. steel trusses, steel frames and reinforced concrete frames, are presented to illustrate the efficiency of the proposed IBH and IMV algorithms. The numerical results demonstrate the excellence of the proposed improved algorithms compared with other state-of-the-art metaheuristics in the literature, in terms of their optimum solutions and reliability.  相似文献   

16.
The paper considers global optimization of costly objective functions, i.e. the problem of finding the global minimum when there are several local minima and each function value takes considerable CPU time to compute. Such problems often arise in industrial and financial applications, where a function value could be a result of a time-consuming computer simulation or optimization. Derivatives are most often hard to obtain, and the algorithms presented make no use of such information.Several algorithms to handle the global optimization problem are described, but the emphasis is on a new method by Gutmann and Powell, A radial basis function method for global optimization. This method is a response surface method, similar to the Efficient Global Optimization (EGO) method of Jones. Our Matlab implementation of the Radial Basis Function (RBF) method is described in detail and we analyze its efficiency on the standard test problem set of Dixon-Szegö, as well as its applicability on a real life industrial problem from train design optimization. The results show that our implementation of the RBF algorithm is very efficient on the standard test problems compared to other known solvers, but even more interesting, it performs extremely well on the train design optimization problem.  相似文献   

17.
Drilling path optimization is one of the key problems in holes-machining. This paper presents a new approach to solve the drilling path optimization problem belonging to discrete space, based on the particle swarm optimization (PSO) algorithm. Since the standard PSO algorithm is not guaranteed to be global convergent or local convergent, based on the mathematical model, the algorithm is improved by adopting the method to generate the stop evolution particle once again to obtain the ability of convergence on the global optimization solution. Also, the operators are proposed by establishing the Order Exchange Unit (OEU) and the Order Exchange List (OEL) to satisfy the need of integer coding in drilling path optimization. The experimentations indicate that the improved algorithm has the characteristics of easy realization, fast convergence speed, and better global convergence capability. Hence the new PSO can play a role in solving the problem of drilling path optimization.  相似文献   

18.
Stress‐related problems have not been given the same attention as the minimum compliance topological optimization problem in the literature. Continuum structural topological optimization with stress constraints is of wide engineering application prospect, in which there still are many problems to solve, such as the stress concentration, an equivalent approximate optimization model and etc. A new and effective topological optimization method of continuum structures with the stress constraints and the objective function being the structural volume has been presented in this paper. To solve the stress concentration issue, an approximate stress gradient evaluation for any element is introduced, and a total aggregation normalized stress gradient constraint is constructed for the optimized structure under the r?th load case. To obtain stable convergent series solutions and enhance the control on the stress level, two p‐norm global stress constraint functions with different indexes are adopted, and some weighting p‐norm global stress constraint functions are introduced for any load case. And an equivalent topological optimization model with reduced stress constraints is constructed,being incorporated with the rational approximation for material properties, an active constraint technique, a trust region scheme, and an effective local stress approach like the qp approach to resolve the stress singularity phenomenon. Hence, a set of stress quadratic explicit approximations are constructed, based on stress sensitivities and the method of moving asymptotes. A set of algorithm for the one level optimization problem with artificial variables and many possible non‐active design variables is proposed by adopting an inequality constrained nonlinear programming method with simple trust regions, based on the primal‐dual theory, in which the non‐smooth expressions of the design variable solutions are reformulated as smoothing functions of the Lagrange multipliers by using a novel smoothing function. Finally, a two‐level optimization design scheme with active constraint technique, i.e. varied constraint limits, is proposed to deal with the aggregation constraints that always are of loose constraint (non active constraint) features in the conventional structural optimization method. A novel structural topological optimization method with stress constraints and its algorithm are formed, and examples are provided to demonstrate that the proposed method is feasible and very effective. © 2016 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.  相似文献   

19.
A non‐gradient‐based approach for topology optimization using a genetic algorithm is proposed in this paper. The genetic algorithm used in this paper is assisted by the Kriging surrogate model to reduce computational cost required for function evaluation. To validate the non‐gradient‐based topology optimization method in flow problems, this research focuses on two single‐objective optimization problems, where the objective functions are to minimize pressure loss and to maximize heat transfer of flow channels, and one multi‐objective optimization problem, which combines earlier two single‐objective optimization problems. The shape of flow channels is represented by the level set function. The pressure loss and the heat transfer performance of the channels are evaluated by the Building‐Cube Method code, which is a Cartesian‐mesh CFD solver. The proposed method resulted in an agreement with previous study in the single‐objective problems in its topology and achieved global exploration of non‐dominated solutions in the multi‐objective problems. © 2016 The Authors International Journal for Numerical Methods in Engineering Published by John Wiley & Sons Ltd  相似文献   

20.
A multi-objective memetic algorithm based on decomposition is proposed in this article, in which a simplified quadratic approximation (SQA) is employed as a local search operator for enhancing the performance of a multi-objective evolutionary algorithm based on decomposition (MOEA/D). The SQA is used for a fast local search and the MOEA/D is used as the global optimizer. The multi-objective memetic algorithm based on decomposition, i.e. a hybrid of the MOEA/D with the SQA (MOEA/D-SQA), is designed to balance local versus global search strategies so as to obtain a set of diverse non-dominated solutions as quickly as possible. The emphasis of this article is placed on demonstrating how this local search scheme can improve the performance of MOEA/D for multi-objective optimization. MOEA/D-SQA has been tested on a wide set of benchmark problems with complicated Pareto set shapes. Experimental results indicate that the proposed approach performs better than MOEA/D. In addition, the results obtained are very competitive when comparing MOEA/D-SQA with other state-of-the-art techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号