首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Conductive heat transfer plays an important role in dissipating thermal energy to achieve lower operating temperatures in various devices. Topology optimization has the potential to provide efficient structural solutions for such devices. The traditional topology optimization approach considers a single material. Adding additional materials with unique properties not only can expand the design options but also may improve the structural performance of the final structure. In this work, a multi-resolution topology optimization approach is employed to design multi-material structures for efficient heat dissipation. The implementation blends an efficient multi-resolution approach to obtain high-resolution designs with an alternating active phase algorithm to handle multi-material giving greater design flexibility. It solves the steady-state heat equation using finite element analysis and iteratively minimizes thermal compliance (maximizes conductivity). Several examples are presented to show the efficacy of the numerical implementation, which involves benchmark problems. Results indicate good prospects when quantitatively compared with single-material structures.  相似文献   

2.
In topology optimization, it is customary to use reciprocal‐like approximations, which result in monotonically decreasing approximate objective functions. In this paper, we demonstrate that efficient quadratic approximations for topology optimization can also be derived, if the approximate Hessian terms are chosen with care. To demonstrate this, we construct a dual SAO algorithm for topology optimization based on a strictly convex, diagonal quadratic approximation to the objective function. Although the approximation is purely quadratic, it does contain essential elements of reciprocal‐like approximations: for self‐adjoint problems, our approximation is identical to the quadratic or second‐order Taylor series approximation to the exponential approximation. We present both a single‐point and a two‐point variant of the new quadratic approximation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Jikai Liu  Kajsa Duke 《工程优选》2016,48(11):1910-1931
This work presents a new multi-material level set topology optimization method which is developed especially for designing plastic parts. Instead of representing the structure using multiple level set functions, this new method employs only one level set function to describe the material/void interface. The injection moulding filling simulation is used to determine the material/material interfaces. Because plastic parts are targeted, domain-specific knowledge is carefully investigated to improve the optimization algorithm. Both homogeneous and heterogeneous fibre-reinforced plastics are considered as potential material phases. For the latter, one extra design freedom, fibre orientation distribution, is introduced. Instead of generating incremental interior voids, which complicates the mould design and part ejection, shape-fixed interior voids could be predefined inside the design domain for functional or assembly purposes. This is represented by an additional level set function. A few numerical examples are studied to demonstrate the effectiveness of the proposed method.  相似文献   

4.
Jian Sun 《工程优选》2013,45(9):863-885
A new methodology for adapting rigorous simulation programs to optimal supervisory control of a central chilled water plant is proposed in this article, which solves plant operation mode optimization and set points optimization by combining heuristic search with sequential quadratic programming. The mathematical basis of this algorithm is developed. A new derivative calculation strategy is introduced in set points optimization. This approach is applied to a central chilled water plant which consists of three chillers, two 3-cell cooling towers, three chilled water pumps and three condenser water pumps. Model verification study is performed. The optimal sequence of operation, set points of the decision variables at given load demand and weather condition are calculated. The plant performance and optimal control results are discussed.  相似文献   

5.
This article presents a numerical approach of topology optimization with multiple materials for the heat conduction problem. The multiphase level set model is used to implicitly describe the geometric boundaries of material regions with different conductivities. The model of multi-material representation has no emergence of the intermediate density. The optimization objective is to construct the optimal heat conductive paths which improve the efficiency of heat transfer. The dissipation of thermal transport potential capacity is taken as the objective function. The sensitivity analysis is implemented by the adjoint variable method, which is the foundation of constructing the velocity field of the level set equation. The optimal result is gradually realized by the evolution of multi-material boundaries, and the topological changes are naturally handled during the optimization process. Finally, the numerical examples are presented to demonstrate the feasibility and validity of the proposed method for topology optimization of the heat conduction problem.  相似文献   

6.
提出一种考虑周期性约束的多材料结构稳态热传导拓扑优化设计方法。针对多材料结构,提出基于有序有理近似材料属性模型(ordered rational approximation of material properties,Ordered-RAMP)的多材料插值模型。以结构散热弱度最小化为目标函数,体积为约束条件,将设计区域划分为有限个相同的子多材料区域。通过重新分配单元散热弱度基值,实现周期性几何约束,借助优化准则法推导设计变量的迭代格式。通过典型2D与3D数值算例,分析不同子区域个数对宏观结构与微观子区域多材料拓扑构型的影响。结果表明:所提方法可实现面向多材料结构的周期性微观构型设计,且各材料分布合理边界清晰,具有良好的稳健性;当子区域个数不同时,均可得到具有周期性的拓扑构型,且所获拓扑形式具有差异性。  相似文献   

7.
In this article a line search algorithm is proposed for solving constrained multi-objective optimization problems. At every iteration of the proposed method, a subproblem is formulated using quadratic approximation of all functions. A feasible descent direction is obtained as a solution of this subproblem. This scheme takes care some ideas of the sequential quadratically constrained quadratic programming technique for single objective optimization problems. A non-differentiable penalty function is used to restrict constraint violations at every iterating point. Convergence of the scheme is justified under the Slater constraint qualification along with some reasonable assumptions. The proposed algorithm is verified and compared with existing methods with a set of test problems. It is observed that this algorithm provides better results in most of the test problems.  相似文献   

8.
Many engineering problems exist in physical domains that can be said to be infinitely large. A common problem in the simulation of these unbounded domains is that a balance must be met between a practically sized mesh and the accuracy of the solution. In transient applications, developing an appropriate mesh size becomes increasingly difficult as time marches forward. The concept of the infinite element was introduced and implemented for elliptic and for parabolic problems using exponential decay functions. This paper presents a different methodology for modeling transient heat conduction using a simplified mesh consisting of only two‐node, one‐dimensional infinite elements for diffusion into an unbounded domain and is shown to be applicable for multi‐dimensional problems. A brief review of infinite elements applied to static and transient problems is presented. A transient infinite element is presented in which the element length is time‐dependent such that it provides the optimal solution at each time step. The element is validated against the exact solution for constant surface heat flux into an infinite half‐space and then applied to the problem of heat loss in thermal reservoirs. The methodology presented accurately models these phenomena and presents an alternative methodology for modeling heat loss in thermal reservoirs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a three-step BEM analysis technique is proposed for solving 2D and 3D transient heat conduction problems consisting of multiple non-homogeneous media. The discretized boundary element formulation is written for each medium. The first step is to eliminate internal variables at the individual medium level; the second step is to eliminate boundary unknowns defined over nodes used only by the medium itself; and the third step is to establish the system of equations according to the continuity conditions of the temperature and heat flux at common interface nodes. Based on the central finite difference technique, an implicit time marching solution scheme is developed for solving the time-dependent system of equations. Three numerical examples are given to demonstrate the accuracy and effectiveness of the presented method.  相似文献   

10.
针对球约束凸二次规划问题,利用Lagrange对偶将其转化为无约束优化问题,然后运用单纯形法对其求解,获得原问题的最优解。最后,对文中给出的算法给出了论证。  相似文献   

11.
In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high-efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point of the formulation is the introduction of the reciprocal-type variables. The topology optimization seeking for minimum weight can be transformed as a sequence of quadratic program with separable and strictly positive definite Hessian matrix, thus can be solved by a sequential quadratic programming approach. A modified sensitivity filtering scheme is suggested to remove undesirable checkerboard patterns and mesh dependence. Several typical examples are provided to validate the presented approach. It is observed that the optimized structure can achieve lighter weight than those from the established method by the demonstrative numerical test. Considerable computational savings can be achieved without loss of accuracy of the final design for 3D structure. Moreover, the effects of multiple constraints and upper bound of the allowable compliance upon the optimized designs are investigated by numerical examples.  相似文献   

12.
We study the ‘classical’ topology optimization problem, in which minimum compliance is sought, subject to linear constraints. Using a dual statement, we propose two separable and strictly convex subproblems for use in sequential approximate optimization (SAO) algorithms. Respectively, the subproblems use reciprocal and exponential intermediate variables in approximating the non‐linear compliance objective function. Any number of linear constraints (or linearly approximated constraints) are provided for. The relationships between the primal variables and the dual variables are found in analytical form. For the special case when only a single linear constraint on volume is present, we note that application of the ever‐popular optimality criterion (OC) method to the topology optimization problem, combined with arbitrary values for the heuristic numerical damping factor η proposed by Bendsøe, results in an updating scheme for the design variables that is identical to the application of a rudimentary dual SAO algorithm, in which the subproblems are based on exponential intermediate variables. What is more, we show that the popular choice for the damping factor η=0.5 is identical to the use of SAO with reciprocal intervening variables. Finally, computational experiments reveal that subproblems based on exponential intervening variables result in improved efficiency and accuracy, when compared to SAO subproblems based on reciprocal intermediate variables (and hence, the heuristic topology OC method hitherto used). This is attributed to the fact that a different exponent is computed for each design variable in the two‐point exponential approximation we have used, using gradient information at the previously visited point. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
We present a method for finding solutions of large‐scale binary programming problems where the calculation of derivatives is very expensive. We then apply this method to a topology optimization problem of weight minimization subject to compliance and buckling constraints. We derive an analytic expression for the derivative of the stress stiffness matrix with respect to the density of an element in the finite‐element setting. Results are presented for a number of two‐dimensional test problems.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This article describes a numerical solution to the topology optimization problem using a time-evolution equation. The design variables of the topology optimization problem are defined as a mathematical scalar function in a given design domain. The scalar function is projected to the normalized density function. The adjoint variable method is used to determine the gradient defined as the ratio of the variation of the objective function or constraint function to the variation of the design variable. The variation of design variables is obtained using the solution of the time-evolution equation in which the source term and Neumann boundary condition are given as a negative gradient. The distribution of design variables yielding an optimal solution is obtained by time integration of the solution of the time-evolution equation. By solving the topology optimization problem using the proposed method, it is shown that the objective function decreases when the constraints are satisfied. Furthermore, we apply the proposed method to the thermal resistance minimization problem under the total volume constraint and the mean compliance minimization problem under the total volume constraint.  相似文献   

15.
This article presents a novel algorithm for topology optimization using an orthotropic material model. Based on the virtual work principle, mathematical formulations for effective orthotropic material properties of an element containing two materials are derived. An algorithm is developed for structural topology optimization using four orthotropic material properties, instead of one density or area ratio, in each element as design variables. As an illustrative example, minimum compliance problems for linear and nonlinear structures are solved using the present algorithm in conjunction with the moving iso-surface threshold method. The present numerical results reveal that: (1) chequerboards and single-node connections are not present even without filtering; (2) final topologies do not contain large grey areas even using a unity penalty factor; and (3) the well-known numerical issues caused by low-density material when considering geometric nonlinearity are resolved by eliminating low-density elements in finite element analyses.  相似文献   

16.
17.
We present a time‐staggered partitioned coupling algorithm for transient heat conduction finite element simulations. This algorithm divides a large structural mesh into a number of smaller subdomains, solves the individual subdomains separately and couples the solutions to obtain the response to the original problem. The proposed algorithm is a mixed multi‐timestep algorithm and enables arbitrary time integration schemes and meshes to be coupled with different timesteps in the various subdomains. In this procedure, the solution of each partition is separately evaluated over a system timestep after which the interfacial conditions are enforced making this a staggered algorithm that facilitates parallel computation. We present examples showing the feasibility of the coupling algorithm and discuss the merits in terms of convergence and stability. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
This paper deals with topology optimization of load‐carrying structures defined on discretized continuum design domains. In particular, the minimum compliance problem with stress constraints is considered. The finite element method is used to discretize the design domain into n finite elements and the design of a certain structure is represented by an n‐dimensional binary design variable vector. In order to solve the problems, the binary constraints on the design variables are initially relaxed and the problems are solved with both the method of moving asymptotes and the sparse non‐linear optimizer solvers for continuous optimization in order to compare the two solvers. By solving a sequence of problems with a sequentially lower limit on the amount of grey allowed, designs that are close to ‘black‐and‐white’ are obtained. In order to get locally optimal solutions that are purely {0, 1}n, a sequential linear integer programming method is applied as a post‐processor. Numerical results are presented for some different test problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
A meshless numerical model is developed for analyzing transient heat conduction in non-homogeneous functionally graded materials (FGM), which has a continuously functionally graded thermal conductivity parameter. First, the analog equation method is used to transform the original non-homogeneous problem into an equivalent homogeneous one at any given time so that a simpler fundamental solution can be employed to take the place of the one related to the original problem. Next, the approximate particular and homogeneous solutions are constructed using radial basis functions and virtual boundary collocation method, respectively. Finally, by enforcing satisfaction of the governing equation and boundary conditions at collocation points of the original problem, in which the time domain is discretized using the finite difference method, a linear algebraic system is obtained from which the unknown fictitious sources and interpolation coefficients can be determined. Further, the temperature at any point can be easily computed using the results of fictitious sources and interpolation coefficients. The accuracy of the proposed method is assessed through two numerical examples.  相似文献   

20.
An adjoint‐based functional optimization technique in conjunction with the spectral stochastic finite element method is proposed for the solution of an inverse heat conduction problem in the presence of uncertainties in material data, process conditions and measurement noise. The ill‐posed stochastic inverse problem is restated as a conditionally well‐posed L2 optimization problem. The gradient of the objective function is obtained in a distributional sense by defining an appropriate stochastic adjoint field. The L2 optimization problem is solved using a conjugate‐gradient approach. Accuracy and effectiveness of the proposed approach is appraised with the solution of several stochastic inverse heat conduction problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号