首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multi-objective optimization of antenna structures is a challenging task owing to the high computational cost of evaluating the design objectives as well as the large number of adjustable parameters. Design speed-up can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation models and design refinement methods permits identification of the Pareto-optimal set of designs within a reasonable timeframe. Here, a study concerning the scalability of surrogate-assisted multi-objective antenna design is carried out based on a set of benchmark problems, with the dimensionality of the design space ranging from six to 24 and a CPU cost of the EM antenna model from 10 to 20 min per simulation. Numerical results indicate that the computational overhead of the design process increases more or less quadratically with the number of adjustable geometric parameters of the antenna structure at hand, which is a promising result from the point of view of handling even more complex problems.  相似文献   

2.
A challenge in engineering design is to choose suitable objectives and constraints from many quantities of interest, while ensuring an optimization is both meaningful and computationally tractable. We propose an optimization formulation that can take account of more quantities of interest than existing formulations, without reducing the tractability of the problem. This formulation searches for designs that are optimal with respect to a binary relation within the set of designs that are optimal with respect to another binary relation. We then propose a method of finding such designs in a single optimization by defining an overall ranking function to use in optimizers, reducing the cost required to solve this formulation. In a design under uncertainty problem, our method obtains the most robust design that is not stochastically dominated faster than a multiobjective optimization. In a car suspension design problem, our method obtains superior designs according to a k-optimality condition than previously suggested multiobjective approaches to this problem. In an airfoil design problem, our method obtains designs closer to the true lift/drag Pareto front using the same computational budget as a multiobjective optimization.  相似文献   

3.
Most preset response surface methodology (RSM) designs offer ease of implementation and good performance over a wide range of process and design optimization applications. These designs often lack the ability to adapt the design on the basis of the characteristics of application and experimental space so as to reduce the number of experiments necessary. Hence, they are not cost‐effective for applications where the cost of experimentation is high or when the experimentation resources are limited. In this paper, we present an adaptive sequential response surface methodology (ASRSM) for industrial experiments with high experimentation cost, limited experimental resources, and high design optimization performance requirement. The proposed approach is a sequential adaptive experimentation approach that combines concepts from nonlinear optimization, design of experiments, and response surface optimization. The ASRSM uses the information gained from the previous experiments to design the subsequent experiment by simultaneously reducing the region of interest and identifying factor combinations for new experiments. Its major advantage is the experimentation efficiency such that for a given response target, it identifies the input factor combination (or containing region) in less number of experiments than the classical single‐shot RSM designs. Through extensive simulated experiments and real‐world case studies, we show that the proposed ASRSM method outperforms the popular central composite design method and compares favorably with optimal designs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Optimal design of multi-response experiments for estimating the parameters of multi-response linear models is a challenging problem. The main drawback of the existing algorithms is that they require the solution of many optimization problems in the process of generating an optimal design that involve cumbersome manual operations. Furthermore, all the existing methods generate approximate design and no method for multi-response n-exact design has been cited in the literature. This paper presents a unified formulation for multi-response optimal design problem using Semi-Definite Programming (SDP) that can generate D-, A- and E-optimal designs. The proposed method alleviates the difficulties associated with the existing methods. It solves a one-shot optimization model whose solution selects the optimal design points among all possible points in the design space. We generate both approximate and n-exact designs for multi-response models by solving SDP models with integer variables. Another advantage of the proposed method lies in the amount of computation time taken to generate an optimal design for multi-response models. Several test problems have been solved using an existing interior-point based SDP solver. Numerical results show the potentials and efficiency of the proposed formulation as compared with those of other existing methods. The robustness of the generated designs with respect to the variance-covariance matrix is also investigated.  相似文献   

5.
An efficient methodology to carry out multi-objective optimization of non-linear structural systems under stochastic excitation is presented. Specifically, an efficient determination of particular Pareto or non-inferior solutions is implemented. Pareto solutions are obtained by compromise programming which is based on the minimization of the distance between the point that contains the individual optima of each of the objective functions and the Pareto set. The response of the structural system is characterized in terms of the first two statistical moments of the response process, i.e. the mean and variance. An efficient sensitivity analysis of non-inferior solutions with respect to the design variables becomes possible with the proposed formulation. Such information is used for decision making and tradeoff analysis. The compromise programming problem is solved by an efficient procedure that combines a local statistical linearization approach, modal analysis, global approximation concepts, and a sequential optimization scheme. Numerical results show that the total number of stochastic analyses required during the multi-objective optimization process is in general very small. Hence, different compromise solutions including the design that best represents the outcome that the designer considers potentially satisfactory are obtained in an efficient manner. In this way, the analyst can conduct a decision-making analysis through an efficient interactive procedure.  相似文献   

6.
In engineering problems, randomness and uncertainties are inherent. Robust design procedures, formulated in the framework of multi-objective optimization, have been proposed in order to take into account sources of randomness and uncertainty. These design procedures require orders of magnitude more computational effort than conventional analysis or optimum design processes since a very large number of finite element analyses is required to be dealt. It is therefore an imperative need to exploit the capabilities of computing resources in order to deal with this kind of problems. In particular, parallel computing can be implemented at the level of metaheuristic optimization, by exploiting the physical parallelization feature of the nondominated sorting evolution strategies method, as well as at the level of repeated structural analyses required for assessing the behavioural constraints and for calculating the objective functions. In this study an efficient dynamic load balancing algorithm for optimum exploitation of available computing resources is proposed and, without loss of generality, is applied for computing the desired Pareto front. In such problems the computation of the complete Pareto front with feasible designs only, constitutes a very challenging task. The proposed algorithm achieves linear speedup factors and almost 100% speedup factor values with reference to the sequential procedure.  相似文献   

7.
The preset response surface methodology (RSM) designs are commonly used in a wide range of process and design optimization applications. Although they offer ease of implementation and good performance, they are not sufficiently adaptive to reduce the required number of experiments and thus are not cost effective for applications with high cost of experimentation. We propose an efficient adaptive sequential methodology based on optimal design and experiments ranking for response surface optimization (O‐ASRSM) for industrial experiments with high experimentation cost, limited experimental resources, and requiring high design optimization performance. The proposed approach combines the concepts from optimal design of experiments, nonlinear optimization, and RSM. By using the information gained from the previous experiments, O‐ASRSM designs the subsequent experiment by simultaneously reducing the region of interest and by identifying factor combinations for new experiments. Given a given response target, O‐ASRSM identifies the input factor combination in less number of experiments than the classical single‐shot RSM designs. We conducted extensive simulated experiments involving quadratic and nonlinear response functions. The results show that the O‐ASRSM method outperforms the popular central composite design, the Box–Behnken design, and the optimal designs and is competitive with other sequential response surface methods in the literature. Furthermore, results indicate that O‐ASRSM's performance is robust with respect to the increasing number of factors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we present an approach for robust compliance topology optimization under volume constraint. The compliance is evaluated considering a point‐wise worst‐case scenario. Analogously to sequential optimization and reliability assessment, the resulting robust optimization problem can be decoupled into a deterministic topology optimization step and a reliability analysis step. This procedure allows us to use topology optimization algorithms already developed with only small modifications. Here, the deterministic topology optimization problem is addressed with an efficient algorithm based on the topological derivative concept and a level‐set domain representation method. The reliability analysis step is handled as in the performance measure approach. Several numerical examples are presented showing the effectiveness of the proposed approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
《Composites Part A》1999,30(7):895-904
An approach is presented to design fuselage frames for minimum weight, minimum cost, or a combination of the two. The approach combines structural requirements and manufacturing constraints into an optimization scheme that alters the geometry of the individual frame components until the objective function is minimized. In addition to the lowest weight and cost points, a near-optimal Pareto set of designs is found, out of which the design that minimizes both cost and weight is determined through a penalty function approach. Four different fabrication processes are considered: conventional sheet metal, high speed machined metal, hand laid-up composite, and resin transfer molded composite. For lightly loaded frames, an automated resin transfer molding process gives the lowest cost and weight designs. For highly loaded frames, high speed machining gives the lowest cost design but automated resin transfer molding gives the lowest weight design. The effects of fabrication process and some of the design and manufacturing constraints on cost and weight are examined.  相似文献   

10.
The sequential design approach to response surface exploration is often viewed as advantageous as it provides the opportunity to learn from each successive experiment with the ultimate goal of determining optimum operating conditions for the system or process under study. Recent literature has explored factor screening and response surface optimization using only one three‐level design to handle situations where conducting multiple experiments is prohibitive. The most straightforward and accessible analysis strategy for such designs is to first perform a main‐effects only analysis to screen important factors before projecting the design onto these factors to conduct response surface exploration. This article proposes the use of optimal designs with minimal aliasing (MA designs) and demonstrates that they are more effective at screening important factors than the existing designs recommended for single‐design response surface exploration. For comparison purposes, we construct 27‐run MA designs with up to 13 factors and demonstrate their utility using established design criterion and a simulation study. Copyright 2011 © John Wiley & Sons, Ltd.  相似文献   

11.
A design optimization procedure is developed using the boundary integral equation (BIE) method for linear elastostatic two-dimensional domains. Optimal shape design problems are treated where design variables are geometric parameters such as the positions and sizing dimensions of entire features on a component or structure. A fully analytical approach is adopted for the design sensitivity analysis where the BIE is implicitly differentiated. The ability to evaluate response sensitivity derivatives with respect to design variables such as feature positions is achieved through the definition of appropriate design velocity fields for these variables. How the advantages of the BIE method are amplified when extended to sensitivity analysis for this category of shape design problems is also highlighted. A mathematical programming approach with the penalty function method is used for solving the overall optimization problem. The procedure is applied to three example problems to demonstrate the optimum positioning of holes and optimization of radial dimensions of circular arcs on structures.  相似文献   

12.
This article deals with improving and evaluating the performance of two evolutionary algorithm approaches for automated engineering design optimization. Here a marine propeller design with constraints on cavitation nuisance is the intended application. For this purpose, the particle swarm optimization (PSO) algorithm is adapted for multi-objective optimization and constraint handling for use in propeller design. Three PSO algorithms are developed and tested for the optimization of four commercial propeller designs for different ship types. The results are evaluated by interrogating the generation medians and the Pareto front development. The same propellers are also optimized utilizing the well established NSGA-II genetic algorithm to provide benchmark results. The authors' PSO algorithms deliver comparable results to NSGA-II, but converge earlier and enhance the solution in terms of constraints violation.  相似文献   

13.
Efficient Pareto Frontier Exploration using Surrogate Approximations   总被引:7,自引:2,他引:5  
In this paper we present an efficient and effective method of using surrogate approximations to explore the design space and capture the Pareto frontier during multiobjective optimization. The method employs design of experiments and metamodeling techniques (e.g., response surfaces and kriging models) to sample the design space, construct global approximations from the sample data, and quickly explore the design space to obtain the Pareto frontier without specifying weights for the objectives or using any optimization. To demonstrate the method, two mathematical example problems are presented. The results indicate that the proposed method is effective at capturing convex and concave Pareto frontiers even when discontinuities are present. After validating the method on the two mathematical examples, a design application involving the multiobjective optimization of a piezoelectric bimorph grasper is presented. The method facilitates multiobjective optimization by enabling us to efficiently and effectively obtain the Pareto frontier and identify candidate designs for the given design requirements.  相似文献   

14.
F. Xiong  Y. Xiong  S. Yang 《工程优选》2013,45(8):793-810
Space-filling and projective properties are desired features in the design of computer experiments to create global metamodels to replace expensive computer simulations in engineering design. The goal in this article is to develop an efficient and effective sequential Quasi-LHD (Latin Hypercube design) sampling method to maintain and balance the two aforementioned properties. The sequential sampling is formulated as an optimization problem, with the objective being the Maximin Distance, a space-filling criterion, and the constraints based on a set of pre-specified minimum one-dimensional distances to achieve the approximate one-dimensional projective property. Through comparative studies on sampling property and metamodel accuracy, the new approach is shown to outperform other sequential sampling methods for global metamodelling and is comparable to the one-stage sampling method while providing more flexibility in a sequential metamodelling procedure.  相似文献   

15.
针对现有JIT系统看板数量决策问题研究多以单目标为主的不足,提出了一种基于实验设计的双目标JIT生产系统看板数量设定方法。该方法同时考虑了高订单满足率和低系统平均在制品水平的双目标优化,以B公司CR油嘴JIT生产系统为例,建立了该JIT生产线的Witness仿真模型以实现数据的收集,以各看板循环回路的看板数量和看板容量进行水平设定,并进行正交实验设计及数据的直观分析处理,然后采用全因子实验的方法,基于帕累托最优的思想获得生产系统看板数量帕累托最优解,形成近似最优看板数量组合的帕累托最优前沿。生产管理人员可根据不同的生产计划和绩效目标从组合中选择合适的看板数量。最后的研究结果验证了该方法的可行性和有效性。  相似文献   

16.
Efficient estimation of response variables in a process is an important problem that requires experimental designs appropriated for each specific situation. When we have a system involving control and noise variables, we are often interested in the simultaneous optimization of the prediction variance of the mean (PVM) and the prediction variance of the slope (PVS). The goal of this simultaneous optimization is to construct designs that will result in the efficient estimation of important parameters. We construct new computer‐generated designs using a desirability function by transforming PVM and PVS into one desirability value that can be optimized using a genetic algorithm. Fraction of design space (FDS) plots are used to evaluate the new designs and six cases are discussed to illustrate the procedure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
An optimization procedure has been developed to uniquely and efficiently determine the “best” local geometry design of a new composite ChamberCore structure. This procedure is based on minimization of the total mass of a single composite ChamberCore subject to a set of design and stress constraints. The stress constraints are obtained in closed form based on the composite box-beam model for various composite lamination designs and loading conditions. The optimization problem statement is constructed and then solved using the VMCON optimization program, which is an iterative sequential quadratic programming (SQP) technique based on Powell's algorithm. The sensitivity of the solution of the optimal geometry to the values of parameters that characterize the structural durability and the failure mechanism is discussed.  相似文献   

18.
A genetic algorithm (GA) optimization method which is coupled to a one-dimensional finite volume method is proposed and implemented as a computer program for the modeling and optimization of a stirling-type pulse tube refrigerator (PTR). The multi-objective optimization procedure is applied to provide the optimization design parameters which are charge pressure, operating frequency, and temperature of after-cooler as well as swept volume of compressor. The procedure is selected to obtain the maximum coefficient of performance (COP) and the minimum cooling temperature (Tcold) as two objective functions. In order to validate the simulation code, the results were compared with the results of other models and experiments. The results showed a reasonably well agreement between simulation output and experimental data. The results of optimal designs are a set of multiple optimum solutions, called Pareto optimal solutions. Moreover, the closed form relations between two objectives are derived for Pareto optimal solutions of pulse tube refrigerator. Finally, a sensitivity analysis of the variation of each design parameter on both objective functions was carried out as well and the results are presented. As a result, the COP is more sensitive than Tcold in the optimum design points. The frequency of refrigerator is the most sensitive factor which affects the COP even with little changes.  相似文献   

19.
The mechanical components subjected cyclic load unusually fail due to fatigue. The traditional deterministic design method still has the risk of failure while the safety factor method sometimes is overconservative and uneconomic. In this study, reliability-based design optimization is applied in structural design of components under low cycle fatigue. A constitutive model (Jiang and Sehitoglu model) was written into user-defined material subroutine of finite element software to make simulation more accurate. In addition, an adaptive least squares support vector machines (LS-SVM)-based response surface method is employed to improve the efficiency of design process. After constructing the implicit life model, a hybrid directional step method is employed to implement the performance measure approach. Finally, a simple case (thickness optimization for cantilever tube) is used to demonstrate the whole procedure of proposed design procedure.  相似文献   

20.
Engineering design generally involves two, possibly integrated, phases: (i) generating design options, and (ii) choosing the most satisfactory option on the basis of some determined criteria. The depth, or lack, of integration between these two phases defines different design approaches, and differing philosophical views from the part of researchers in the field of computational design. Optimization-Based Design (OBD) covers the spectrum of this depth of integration. While most OBD approaches strongly integrate these two phases, some employ computational optimization only in the first or second phase. Regardless of where a method or researcher lies in this philosophical spectrum, some requisite characteristics are fundamental to the effectiveness of OBD methods. In particular, (i) the Aggregate Objective Function (AOF) used in the optimization must have the ability to generate all Pareto solutions, (ii) the generation of any existing Pareto solutions must be possible with reasonable ease, and (iii) even changes in the AOF parameters should yield a well distributed set of Pareto solutions. This paper examines the effectiveness of physical programming (PP) with respect to the latter, yielding favorable conclusions. Previous papers have led to similarly positive conclusions with respect to the former two. This paper also presents a comparative study featuring PP and other popular methods, where PP is shown to perform favorably. A PP-based method for generating the Pareto frontier is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号