首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is dedicated to the scheduling problem of multi-cluster tools with process module residency constraints and multiple wafer product types. The problem is formulated as a non-linear programming model based on a set of time constraint sets. An effective algorithm called the time constraint sets based (TCSB) algorithm is presented as a new method to schedule the transport modules to minimise the makespan of a number of wafers. In approach, time constraint sets are maintained for all the resources and necessary operations to exploit the remaining production capacities during the scheduling process. To validate the proposed algorithm on a broader basis, a series of simulation experiments are designed to compare our TCSB algorithm with the benchmark with regard to cluster factor, configuration flexibilities and the variation of the processing times and residency constraint times. The results indicate that the proposed TCSB algorithm gives optimal or near optimal scheduling solutions in most cases.  相似文献   

2.
ABSTRACT

To improve the efficiency of wafer fabrication, this work addresses the scheduling and control problems of mixed-processing with multiple wafer types in cluster tools. Then, based on a developed Petri net (PN) model, it presents a general model for cluster tools with multiple wafer types and the conventional swap strategy. By analyzing the coordination mechanism between wafers processing and robot tasks, necessary and sufficient conditions are established to check the schedulability of the system that is operated by using the conventional swap strategy. If the system is not schedulable checked by such schedulability conditions, a constraint-guided heuristic algorithm and a conflicts-avoiding algorithm are developed to obtain a reasonable schedule. Finally, illustrative examples are presented to show the applications of the proposed method.  相似文献   

3.
In real scheduling problems, unexpected changes may occur frequently such as changes in task features. These changes cause deviation from primary scheduling. In this article, a heuristic model, inspired from Artificial Bee Colony algorithm, is proposed for a dynamic flexible job-shop scheduling (DFJSP) problem. This problem consists of n jobs that should be processed by m machines and the processing time of jobs deviates from estimated times. The objective is near-optimal scheduling after any change in tasks in order to minimise the maximal completion time (Makespan). In the proposed model, first, scheduling is done according to the estimated processing times and then re-scheduling is performed after determining the exact ones considering machine set-up. In order to evaluate the performance of the proposed model, some numerical experiments are designed in small, medium and large sizes in different levels of changes in processing times and statistical results illustrate the efficiency of the proposed algorithm.  相似文献   

4.
We examine a cyclic scheduling problem of sequentially connected cluster tools with a single input and output module, which includes multi-cluster tools and linear cluster tools. Every component tool has a dual-armed robot, and chambers are parallelised for a long process step. An intermediate buffer between each pair of adjacent component tools has a limited capacity, and all processed wafers should return to the input and output module. To examine the scheduling problem, we first compute workloads of the process steps and robots to obtain a lower bound on the tool cycle time. We then identify a rule of assigning the chambers to the process steps that makes the tool cycle time independent of the order of using the parallel chambers. We also propose a simple robot task sequence which is modified from the well-known swap sequence for each component tool. We prove that the modified swap sequence is optimal when one of the process steps, not a robot, is the bottleneck. We also present a scheduling strategy which controls robot task timings to deal with interference of wafer flows between each pair of adjacent component tools. Finally, we perform numerical experiments to show the performance of the proposed sequence.  相似文献   

5.
A single-machine scheduling problem with new maintenance activities is examined in this paper. In the scheduling literature, it is often assumed that the interval between maintenance activities is fixed or within a specified time frame. However, this assumption may not hold true in many real-world situations, such as the maintenance activities in wafer manufacturing of semiconductor. Before the wafer manufacturing process starts, it is imperative that the wafers go through a number of cleaning operations to avoid contamination. Using a cleaning agent as the main material of wafer cleaning, the contamination will be dissolved and removed from wafer surface. In case of contamination being accumulated substantial and going beyond a permitted value, the cleaning agent is highly likely to damage the wafer surfaces. Thus, the interval between maintenance activities in the wafer manufacturing process is deemed irregular. The objective function of the proposed problem is to minimise total completion time. Addressing the problem, a binary integer programming model is formulated in this paper. Furthermore, with the research problem being NP-hard, a heuristic based on two special properties is proposed to address the problem. To evaluate and validate the proposed heuristic, a new lower bound is further developed. Extensive experiments have been conducted showing that the proposed heuristic efficiently yields a near-optimal solution with an average percentage error of 15.4 from lower bound.  相似文献   

6.
We examine cyclic scheduling of single-armed and dual-armed cluster tools that concurrently process two wafer types by sharing a process module (PM). Because a PM is shared by two different wafers, the backward and swap sequences, which are prevalently used for single-armed and dual-armed tools without such complexity, respectively, are not effective. We therefore propose new sequences, called alternating backward and alternating swap sequences, for steady cycles of single-armed and dual-armed tools, respectively. We then develop optimality conditions for which the proposed sequences achieve the minimum cycle times in a fundamental cycle, and show that the optimality conditions hold for most practical cases. We also develop a condition for which a shared PM becomes the bottleneck and hence the PM sharing increases the cycle time. For general cycles, we propose heuristic scheduling methods that combine both the alternating backward (or swap) sequence and the conventional backward (or swap) sequence. Finally, we experimentally verify the efficiency and effectiveness of the proposed algorithm for dual-armed cluster tools.  相似文献   

7.
This study addresses the problem of determining the allocation of operations and their tools to machines, the operation processing times and the allocation/sequence of the parts to be processed on each machine for flexible manufacturing systems with controllable processing times. Tool lives, tool copies and tool sharing are also considered. An integer programming model is developed for the objective of minimizing the sum of operation processing and tardiness costs. Then, iterative algorithms are proposed that solve the two subproblems iteratively, where the loading subproblem is solved by a modified bin packing algorithm under initial processing times and the resulting scheduling subproblem is solved by a priority scheduling method while modifying the loading plans and operation processing times iteratively. Computational experiments were carried out, and the results are reported.  相似文献   

8.
Modern semiconductor wafer fabrication systems are changing from 200?mm to 300?mm wafer processing, and with the dual promises of more chips per wafer and economy of scale, leading semiconductor manufacturers are attracted to developing and implementing 300?mm wafer fabs. However, in today's dynamic and competitive global market, a successful semiconductor manufacturer has to excel in multiple performance indices, such as manufacturing cycle time and on-time delivery, and simultaneously optimize these objectives to reach the best-compromised system achievement. To cope with this challenge, in this paper, the infrastructure of a timed EOPNs-based multiple-objective real-time scheduling system (MRSS) is proposed to tackle complex 300?mm wafer fabs. Four specific performance objectives pursued by contemporary semiconductor manufacturers are integrated into a priority-ranking algorithm, which can serve as the initial scheduling guidance, and then all wafer lots will be dynamically dispatched by the real-time state-dependent dispatching system. This dispatching control system is timed EOPN-based and adopts a heterarchical organization that leads to a better real-time performance and adaptability. As the foundation of real-time schedule, the timed EOPNs modelling approach is expounded in detail, and the prototype of the MRSS simulation system is also provided.  相似文献   

9.
Weibo Liu  Mark Price 《工程优选》2016,48(10):1808-1822
A new heuristic based on the Nawaz–Enscore–Ham algorithm is proposed in this article for solving a permutation flow-shop scheduling problem. A new priority rule is proposed by accounting for the average, mean absolute deviation, skewness and kurtosis, in order to fully describe the distribution style of processing times. A new tie-breaking rule is also introduced for achieving effective job insertion with the objective of minimizing both makespan and machine idle time. Statistical tests illustrate better solution quality of the proposed algorithm compared to existing benchmark heuristics.  相似文献   

10.
This research focuses on solving a common wafer test scheduling problem in semiconductor manufacturing. During wafer testing, a series of test processes are conducted on wafers using computer-controlled test stations at various temperatures. The test processes are conducted in a specified order on a wafer lot, resulting in precedence constraints for the schedule. Furthermore, the assignment of the wafer lots to test stations and the sequence in which they are processed affects the time required to set up the test operations. Thus, the set-up times are sequence dependent. Four heuristics are developed to solve the test scheduling problem with the aim of minimizing the makespan required to test all wafers on a set of test stations. The heuristics generate a sorted list of wafer lots as a dispatching sequence and then schedule the wafer lots on test stations in order of appearance on the list. An experimental analysis and two case studies are presented to validate the proposed solution approaches. In the case studies, the heuristics are applied to actual data from a semiconductor manufacturing facility. For both case studies, the proposed solution approaches decrease the makespan by 23–45% compared with the makespan of the actual schedule executed in the manufacturing facility.  相似文献   

11.
Solar power has become an attractive alternative source of energy. The multi-crystalline solar cell has been widely accepted in the market because it has a relatively low manufacturing cost. Multi-crystalline solar wafers with larger grain sizes and fewer grain boundaries are higher quality and convert energy more efficiently than mono-crystalline solar cells. In this article, a new image processing method is proposed for assessing the wafer quality. An adaptive segmentation algorithm based on region growing is developed to separate the closed regions of individual grains. Using the proposed method, the shape and size of each grain in the wafer image can be precisely evaluated. Two measures of average grain size are taken from the literature and modified to estimate the average grain size. The resulting average grain size estimate dictates the quality of the crystalline solar wafers and can be considered a viable quantitative indicator of conversion efficiency.  相似文献   

12.
Yield analysis is one of the key concerns in the fabrication of semiconductor wafers. An effective yield analysis model will contribute to production planning and control, cost reductions and the enhanced competitiveness of enterprises. In this article, we propose a novel discrete spatial model based on defect data on wafer maps for analyzing and predicting wafer yields at different chip locations. More specifically, based on a Bayesian framework, we propose a hierarchical generalized linear mixed model, which incorporates both global trends and spatially correlated effects to characterize wafer yields with clustered defects. Both real and simulated data are used to validate the performance of the proposed model. The experimental results show that the newly proposed model offers an improved fit to spatially correlated wafer map data.  相似文献   

13.
This paper considers the parallel batch processing machine scheduling problem which involves the constraints of unequal ready times, non-identical job sizes, and batch dependent processing times in order to sequence batches on identical parallel batch processing machines with capacity restrictions. This scheduling problem is a practical generalisation of the classical parallel batch processing machine scheduling problem, which has many real-world applications, particularly, in the aging test operation of the module assembly stage in the manufacture of thin film transistor liquid crystal displays (TFT-LCD). The objective of this paper is to seek a schedule with a minimum total completion time for the parallel batch processing machine scheduling problem. A mixed integer linear programming (MILP) model is proposed to optimise the scheduling problem. In addition, to solve the MILP model more efficiently, an effective compound algorithm is proposed to determine the number of batches and to apply this number as one parameter in the MILP model in order to reduce the complexity of the problem. Finally, three efficient heuristic algorithms for solving the large-scale parallel batch processing machine scheduling problem are also provided.  相似文献   

14.
The coating of the photoresist on the semiconductor substrate is a common process in lithography sequence. It is important to monitor the uniformity of the photoresist thickness across the substrate as the nonuniformity in photoresist thickness leads to variations in the linewidth/critical dimension (CD). In this paper, we propose a simple in situ photoresist thickness monitoring system. Our approach involves the integration of a single spectrometer to measure the photoresist thickness contour on the wafer during the spin-coating step or the edge-bead removal step. We note that the existing approaches in the monitoring of photoresist thickness are for the cases of nonrotating wafers. Our proposed approach also does not require extra processing steps compared with offline tools, which require the wafer to be moved from the processing equipment to the metrology tool. The experimental results are compared with an offline ellipsometer: the worst-case error is found to be less than 1%.   相似文献   

15.
闵雁  伍乃骐 《工业工程》2012,15(2):1-15
作为半导体制造中单晶圆加工技术的可重构集成设备,组合设备在半导体产业得到越来越广泛的应用。使用组合设备使得半导体制造产出更高、生产周期更短、空间利用率更高以及生产成本更低。由于组合设备的运行受限于诸多约束条件,有效运行一台组合设备相当困难。目前已有大量的有关组合设备建模、性能分析及调度等相关研究工作。本文回顾了这些研究工作的进展及其使用的研究方法,探讨了现有的方法的优缺点。基于这些分析,指出了进一步的研究方向。  相似文献   

16.
Abstract: Photolithography machine is one of the most expensive equipment in semiconductor manufacturing system, and as such is often the bottleneck for processing wafers. This paper focuses on photolithography machines scheduling with the objective of total completion time minimisation. In contrast to classic parallel machines scheduling, it is characterised by dynamical arrival wafers, re-entrant process flows, dedicated machine constraints and auxiliary resources constraints. We propose an improved imperialist competitive algorithm (ICA) within the framework of a rolling horizon strategy for the problem. We develop a variable time interval-based rolling horizon strategy to decide the scheduling point. We address the global optimisation in every local scheduling by proposing a mixed cost function. Moreover, an adaptive assimilation operator and a sociopolitical competition operator are used to prevent premature convergence of ICA to local optima. A chaotic sequence-based local search method is presented to accelerate the rate of convergence. Computational experiments are carried out comparing the proposed algorithm with ILOG CPLEX, dispatching rules and meta-heuristic algorithms in the literature. It is observed that the algorithm proposed shows an excellent behaviour on cycle time minimisation while with a good on time delivery rate and machine utilisation rate.  相似文献   

17.
Peng Guo  Wenming Cheng 《工程优选》2013,45(11):1564-1585
This article considers the parallel machine scheduling problem with step-deteriorating jobs and sequence-dependent setup times. The objective is to minimize the total tardiness by determining the allocation and sequence of jobs on identical parallel machines. In this problem, the processing time of each job is a step function dependent upon its starting time. An individual extended time is penalized when the starting time of a job is later than a specific deterioration date. The possibility of deterioration of a job makes the parallel machine scheduling problem more challenging than ordinary ones. A mixed integer programming model for the optimal solution is derived. Due to its NP-hard nature, a hybrid discrete cuckoo search algorithm is proposed to solve this problem. In order to generate a good initial swarm, a modified Biskup–Hermann–Gupta (BHG) heuristic called MBHG is incorporated into the population initialization. Several discrete operators are proposed in the random walk of Lévy flights and the crossover search. Moreover, a local search procedure based on variable neighbourhood descent is integrated into the algorithm as a hybrid strategy in order to improve the quality of elite solutions. Computational experiments are executed on two sets of randomly generated test instances. The results show that the proposed hybrid algorithm can yield better solutions in comparison with the commercial solver CPLEX® with a one hour time limit, the discrete cuckoo search algorithm and the existing variable neighbourhood search algorithm.  相似文献   

18.
In semiconductor manufacturing, the surface quality of silicon wafers has a significant impact on the subsequent processes that produce devices using the wafers as a component. The surface quality of a wafer is characterised by a two-dimensional (2-D) data structure: the geometric requirement for the wafer surface is smooth and flat and the thickness should fall within certain specification limits. Therefore, both low deviation and high uniformity are desirable for control over the wafer quality. In this work, we develop a run-to-run control algorithm for improving wafer quality. Considering the unique 2-D data structure, we first construct a model that encompasses the spatial correlation of the observations on the wafer surface to link the wafer quality with the process variables, and subsequently develop a recursive algorithm to generate optimal set points for the controllable factors. More specifically, a Gaussian-Kriging model is used to characterise the spatial dependence of the thickness measures of the wafer and a recursive least square method is employed to update the estimates of the model parameters. The performance of the new controller is studied via simulation and compared with existing controllers, which demonstrates that the newly proposed controller can effectively reduce the surface variations of the silicon wafers.  相似文献   

19.
This paper addresses the problem of scheduling N jobs on a single machine equipped with an automatic tool interchange mechanism. We consider the case where the total number of tools required to process all N jobs is greater than the capacity of the tool magazine, and where processing times and switching times are independent. The underlying problem is to find the job sequence and tool replacement policy that minimizes the total number of switches. This is equivalent to minimizing the makespan. Two industrial applications of the model are cited.

The problem is formulated as a nonlinear integer program and solved with a dual-based relaxation heuristic designed to quickly find good local solutions. An example is given to highlight the computations and a series of test cases is examined to gauge the performance of the proposed methodology. The results demonstrate that in almost all cases global optimality is obtained, but in notably less time than current techniques admit. This points up the practicality of using the algorithm for real time control. Extensions to the L-machine scheduling problem are also discussed.  相似文献   

20.
The problem considered is the scheduling of a job shop with job due dates, intermittent job arrivals, and statistical processing times. Centralized scheduling uses a sequence of static problems for generating priorities at review times. A multi-pass heuristic program, which has proven effective in earlier research, is applied to the up-dated static scheduling problem at each review time. A procedure is proposed for implementing priorities on the shop floor between review times. The procedure is expressly designed to integrate the scheduling of newly arriving jobs to modify the schedule. In simulation experiments using tardiness statistics for evaluation, centralized scheduling and the proposed implementation procedure proved to be an extremely effective combination. Comparison with another procedure that gives the centralized schedule precedence over new arrivals indicates the importance of the implementation procedure when periodic centralized scheduling is used in a dynamic situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号