首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-acetyltransferase (NAT) activity was determined by incubation of purified Enterobacter aerogenes enzyme with 2-aminofluorene (2-AF) as the substrate, followed by high pressure liquid chromatography assays. The NAT activity from E. aerogenes was 0.58 +/- 0.08 nmol/min/mg protein for 2-AF. The values of apparent K(m) and Vmax were 0.72 +/- 0.14 mM and 2.45 +/- 0.29 nmol/min/mg protein, respectively, for 2-AF. The optimal pH value for the enzyme activity was 7.5 for the 2-AF tested. The optimal temperature for enzyme activity was 37 degrees C for the 2-AF substrate. The molecular weight of NAT from E. aerogenes was 44.9 kD. Among a series of divalent cations and salts, Zn2+, Ca2+, and Fe2+ were demonstrated to be the most potent protease inhibitors, and only ethylenediaminetetraacetic acid significantly protected the NAT. Iodoacetamide, in contrast to other agents, markedly inhibited NAT.  相似文献   

2.
Experimental and clinical evidence indicates that AcCoA:arylamine N-acetyltransferases (NATs; EC 2.3.1.5) are involved in the bioactivation and inactivation of a wide variety of arylamine, hydrazine, and carcinogenic arylamine xenobiotics. Longitudinal distribution of NATs in the intestine of the hamster, mouse, and two strains of rat was examined utilizing the model arylamine substrates procainamide(PA) and p-aminobenzoic acid (PABA) for the monomorphic (NAT1) and polymorphic (NAT2) enzymes in the rodent. NAT1 and NAT2 were distributed quite differently in each species examined. In particular, rat intestinal NATs were distributed equally throughout the intestinal tract. In contrast, hamster intestinal NATs decreased in activity from the proximal small intestine to the distal large intestine. Mouse NAT2 activity was highest in the cecum, whereas NAT1 was highest in the proximal small intestine. Although these model substrates have been shown to be selective for NATs, they are not specific. Therefore, a series of biochemical studies were undertaken to evaluate NAT multiplicity in the intestine of the F-344 rat. To assess multiplicity of NAT expression, selective inhibition, differential sensitivity to heat inactivation, and kinetic analysis were performed on intestinal cytosol. Eadie-Hofstee transformation of PA N-acetylation yielded a curvilinear plot indicative that a low affinity-high capacity enzyme aside from NAT1 (presumably NAT2) was contributing to PA N-acetylation activity. PA activity was found to exhibit approximately 4- to 5-fold greater thermostability than PABA activity. Furthermore, PA acetylation could be inhibited selectively with vinyl fluorenyl ketone (2.5 to 5 microM) but not with methotrexate (up to 2 mM). Taken together, these studies suggest the expression of both NAT1 and NAT2 in the intestine of the F-344 rat.  相似文献   

3.
Genes for the 290 amino acid, 33-34 kDa cytosolic acetyltransferases (NAT1* and NAT2*) from rat and hamster were cloned and expressed in Escherichia coli. Active clones were selected by a simple visual test for their ability to decolorize 4-aminoazobenzene in bacterial medium by acetylation. These recombinant acetyltransferases were analyzed for: (i) N-acetyltransferase, which was assayed by the rate of acetyl coenzyme A-dependent N-acetylation of 2-aminofluorene (2-AF) or 4-aminoazobenzene (AAB); (ii) arylhydroxamic acid acyltransferase, assayed by N,O-acyltransfer with N-hydroxy-N-acetyl-2-aminofluorene. Both NAT2s showed first order increases in N-acetylation rates with increasing 2-AF or AAB concentrations between 5 and 100 microM, with apparent K(m) values of 22-32 and 62-138 microM respectively. Although under the same conditions the N-acetylation rates for the two NAT1s declined by > 50%, below 5 microM 2-AF or AAB, the NAT rate data fit Michaelis-Menten kinetics, and the apparent K(m) values were 0.2-0.9 microM. For N,O-acyltransferase, the apparent K(m) values of the NAT1s were approximately 6 microM, while the K(m) values of the NAT2s were approximately 20- to 70-fold higher. SDS-PAGE/Western blot analysis of the recombinant acetyltransferases gave apparent relative molecular weights (MWr) of approximately 31 kDa for both NAT1s and rat NAT2 and approximately 29 kDa for hamster NAT2. Comparable MWr values were observed for native hamster liver NAT1 and NAT2 and for rat NAT1 under the same conditions. Although we did not detect NAT2-like activity in rat liver cytosol previously, the present data show that the rat NAT2* gene does code for a functional acetyltransferase, with properties similar to those of hamster liver NAT2. The data also indicate that at low substrate concentrations, NAT1 would apparently play the predominant role in vivo in N-acetylation and N,O-acyltransfer of aromatic amine derivatives, including their metabolic activation to DNA-reactive agents.  相似文献   

4.
Arylamine N-acetyltransferase (NAT) activities with 2-aminofluorene (2-AF) and p-aminobenzoic acid (PABA) as substrates were determined in Helicobacter pylori, collected from patients with peptic ulcers. The NAT activity was determined using an acetyl CoA recycling assay and high pressure liquid chromatography. Inhibition of growth studies from H. pylori demonstrated that glycyrrhizic acid elicited dose-dependent bactericidal effect in H. pylori cultures, i.e.; the greater the concentration of glycyrrhizic acid, the greater the inhibition of growth of H. pylori. Cytosols or suspensions of H. pylori with and without selected concentrations of glycyrrhizic acid co-treatment showed different percentages of 2-AF and PABA acetylation. The data indicated that there was decreased NAT activity associated with increased glycyrrhizic acid in H. pylori cytosols and intact cells. For the cytosol and intact bacteria examinations, the apparent values of Km and Vmax were decreased after co-treated with 80 M glycyrrhizic acid. This report is the first demonstration of glycyrrhizic acid inhibition of arylamine NAT activity and glycyrrhizic acid inhibition of growth in the bacterium H. pylori.  相似文献   

5.
This study was designed to assess the effects of aspirin on arylamine N-acetyltransferase (NAT) activities in the bacterium Klebsiella pneumoniae using high performance liquid chromatography to measure the acetylation of 2-aminofluorene (2-AF) with or without aspirin. Cytosols or suspensions of K. pneumoniae with or without specific concentrations of aspirin co-treatment showed different percentages of 2-AF acetylation. The data indicated that there was decreased NAT activity associated with increased levels of aspirin in K. pneumoniae cytosols and in intact bacteria. For the cytosol examination, the apparent values of Km and Vmax decreased 0.59- and 0.58-fold after co-treated with 40 microM aspirin, respectively, for 2-AF. For the intact bacteria examination, the apparent values of Km and Vmax decreased 0.60- and 0.67-fold after co-treated with 40 microM aspirin, respectively, for 2-AF. This report is the first demonstration to show that aspirin can decrease N-acetyltransferase activity in the bacterium K. pneumoniae.  相似文献   

6.
Arylamine N-acctyltransferase (NAT) activities with p-aminobenzoic acid (PABA) and 2-aminofluorene (2-AF) were determined in the bacterium Helicobacter pylori collected from peptic ulcer patients. Two assay systems were performed, one with cellular cytosols, the other with intact cell suspensions. Cytosols or suspensions of H. pylori with or without specific concentrations of diallyl sulfide (DAS) or diallyl disulfide (DADS) co-treatment showed different percentages of 2-AF and PABA acetylation. The data indicated that there was decreased NAT activity associated with increased levels of DAS or DADS in H. pylori cytosols and suspensions. Viability studies on H. pylori demonstrated that DAS or DADS elicited dose-dependent bactericide affects on H. pylori cultures. The data also indicated that DAS and DADS decreased the apparent values of K(m) and Vmax of NAT enzyme from H. pylori in both systems examined. This report is the first demonstration that garlic components can affect H. pylori growth and NAT activity.  相似文献   

7.
Arylamine N-acetyltransferase (NAT) activities with p-aminobenzoic acid and 2-aminofluorene were determined in Helicobacter pylori, a gram-negative rod bacteria collected from peptic ulcer patients. The NAT activity was determined using a acetyl CoA recycling assay and HPLC. Cytosols or suspensions of H. pylori with and without selected concentrations of emodin co-treatment showed different percentages of 2-aminofluorene and p-aminobenzoic acid acetylation. The data indicate that there were decreased NAT activity associated with increased emodin in H. pylori cytosols. As 400 microns of emodin can obviously inhibit NAT activity both in vitro and in vivo (inhibition rate 90% and 93% for 2-aminofluorene and p-aminobenzoic acid in vitro, and 90% and 92%, respectively, for both substrate in vivo). For in vitro examination, the apparent values of Km and Vmax were 3.12 +/- 0.38 mM and 15.20 +/- 3.16 nmol/min/mg protein for 2-aminofluorene, and 0.56 +/- 0.12 mM and 0.74 +/- 0.09 nmol/min mg protein for p-aminobenzoic acid. However, when emodin was added to the reaction mixtures, the values of apparent Km and Vmax were 2.40 +/- 0.32 mM and 10.62 +/- 0.04 nmol/min/mg protein for 2-aminofluorene, and 0.23 +/- 0.02 mM and 0.62 +/- 0.08 nmol/min/mg protein for p-aminobenzoic acid. For in vivo examination, the apparent Km and Vmax were 0.82 +/- 0.18 mM and 0.92 +/- 0.21 nmol/min/10 x 10(10) colony forming units (CFU) for 2-aminofluorene, and 0.78 +/- 0.14 mM and 0.52 +/- 0.06 nmol/min/ 10 x 10(10) (CFU) for p-aminobenzoic acid. However, when emodin was added to the reaction mixtures, the values of apparent Km and Vmax were 0.50 +/- 0.08 mM and 0.62 +/- 0.22 nmol/min/ 10 x 10(10) (CFU) for 2-aminofluorene, and 0.52 +/- 0.21 mM and 0.26 +/- 0.04 nmol/min/ 10 x 10(10) (CFU) for p-aminobenzoic acid. This report is the first finding of emodin inhibition of arylamine N-acetyltransferase activity in a strain of H. pylori.  相似文献   

8.
The inhibition of arylamine N-acetyltransferase (NAT) activity by ibuprofen was determined in a human colon tumour (adenocarcinoma) cell line. Two assay systems were employed, one with cellular cytosols (9000 g supernatant) and the other with intact colon tumour cell suspensions. The NAT activity in a human colon tumour cell line was inhibited by ibuprofen in a dose-dependent manner in both systems, i.e. the greater the concentration of ibuprofen in the reaction, the greater the inhibition of NAT activities in both systems. The data also indicated that ibuprofen decreases the apparent Km and Vmax of NAT enzyme from human colon tumour cells in both systems examined. This report is the first demonstration to show that ibuprofen affects human colon tumour cell NAT activity.  相似文献   

9.
Diallyl sulfide (DAS) and diallyl disulfide (DADS), major components of garlic, were used to determine inhibition of arylamine N-acetyltransferase (NAT) activity in a human colon tumour (adenocarcinoma) cell line. Two assay systems were performed, one with cellular cytosols (9000g supernatant), the other with intact bacterial cell suspensions. The NAT activity in a human colon tumour cell line was inhibited by DAS and DADS in a dose-dependent manner in both system: that is, the greater the concentration of DAS and DADS in the reaction, the greater the inhibition of NAT activities in both systems. The data also indicated that DAS and DADS decrease the apparent values of Km and Vmax of NAT enzymes from human colon tumour cells in both systems examined. This is the first report to demonstrate that garlic components do affect human colon tumour cell NAT activity.  相似文献   

10.
We have investigated the role of arginine residues in the regulation of the mitochondrial permeability transition pore, a cyclosporin A-sensitive inner membrane channel. Isolated rat liver mitochondria were treated with the arginine-specific chemical reagent 2, 3-butanedione or phenylglyoxal, followed by removal of excess free reagent. After this treatment, mitochondria accumulated Ca2+ normally, but did not undergo permeability transition following depolarization, a condition that normally triggers opening of the permeability transition pore. Inhibition by 2,3-butanedione and phenylglyoxal correlated with matrix pH, suggesting that the relevant arginine(s) are exposed to the matrix aqueous phase. Inhibition by 2,3-butanedione was potentiated by borate and was reversed upon its removal, whereas inhibition by phenylglyoxal was irreversible. Treatment with 2,3-butanedione or phenylglyoxal after induction of the permeability transition by Ca2+ overload resulted in pore closure despite the presence of 0.5 mM Ca2+. At concentrations that were fully effective at inhibiting the permeability transition, these arginine reagents (i) had no effect on the isomerase activity of cyclophilin D and (ii) did not affect the rate of ATP translocation and hydrolysis, as measured by the production of a membrane potential upon ATP addition in the presence of rotenone. We conclude that reaction with 2,3-butanedione and phenylglyoxal results in a stable chemical modification of critical arginine residue(s) located on the matrix side of the inner membrane, which, in turn, strongly favors a closed state of the pore.  相似文献   

11.
The arginine-specific reagents phenylglyoxal and butane-2,3-dione irreversibly inactivate the Tritrichomonas foetus hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) and Schistosoma mansoni hypoxanthine-guanine phosphoribosyltransferase (HGPRT). The inactivation of the tritrichomonal enzyme by phenylglyoxal follows time-dependent and concentration-dependent pseudo-first-order kinetics. Complete protection against inactivation is afforded by the addition of 25 microM GMP, whereas 5-phosphoribosyl-1-diphosphate (PRibPP) at 50-250 microM can only slow down the inactivation, without being protective. Digestion of [7-(14)C]phenylglyoxal-modified enzyme with trypsin and separation of the peptides by reverse-phase HPLC shows that only one radioactive peak is greatly diminished by incubation with 25 microM GMP or 1 mM PRibPP. Mass-spectral analysis identifies Arg155 as the target site of two molecules of phenylglyoxal that is protected by the substrates. This amino acid residue is positioned next to Tyr156, which is a highly conserved aromatic residue among all the purine phosphoribosyltransferases (PRT) and is always found stacked on top of the purine substrate. This may explain why phenylglyoxal labeling of Arg155 inactivates the enzyme and why GMP can protect Arg155 more effectively than PRibPP. Among the purine PRT in our possession, only schistosomal HGPRT, the only other enzyme that contains an arginine residue at the corresponding location (Arg187), was susceptible to phenylglyoxal and butane-2,3-dione. The presence of Lys185-Phe186 and Ser179-Trp180 at the corresponding locations in human HGPRT and Giardia lamblia GPRT, respectively, may explain their resistance to phenylglyoxal. Thus, Arg155 in T. foetus HGXPRT and Arg187 in S. mansoni HGPRT will be attractive targets for future studies.  相似文献   

12.
An acetylator polymorphism has been described in the mouse and the inbred strains C3H/HeJ and A/HeJ constitute rapid and slow acetylators, respectively. The NAT1, NAT2, and NAT3 genes from C3H/HeJ and A/HeJ acetylator inbred mouse strains were amplified using the polymerase chain reaction, cloned into the plasmid vector pUC19, and sequenced. They were then subcloned into the prokaryotic expression vector pKK223-3 and expressed in Escherichia coli strain JM105. The 870-bp nucleotide coding region of NAT1 and NAT3 did not differ between the rapid and slow acetylator mouse strains, or from that of previously published mouse NAT1 and NAT3 sequences. However, NAT2 did differ between the rapid and slow acetylator strains with an A296 T transition which causes a (Asn99-->Ile) substitution in the deduced amino acid sequence. Recombinant NAT1, NAT2, and NAT3 proteins catalyzed N-, O-, and N,O-acetyltransferase activities. NAT3 catalyzed aromatic amine N-acetyltransferase activities at very low rates, which confirms a previous study. Apparent K(m) and Vmax kinetic constants for N-acetylation were 5- to 10-fold lower for recombinant mouse NAT1 than NAT2. Intrinsic clearances for recombinant mouse NAT1- and NAT2-catalyzed N-acetylation of aromatic amine carcinogens were comparable. Both recombinant mouse NAT1 and NAT2 catalyzed the metabolic activation of N-hydroxyarylamine (O-acetylation) and N-hydroxyarylamide (N,O-acetylation) carcinogens. Recombinant mouse NAT3 catalyzed N,O-acetylation at very low rates, while O-acetylation was undetectable. No difference was observed between rapid and slow acetylator recombinant NAT2 proteins to activate aromatic amines by O- or N,O-acetylation, in substrate specificity, expression of immunoreactive protein, electrophoretic mobility, or N-acetyltransferase Michaelis-Menten kinetic constants. However, the slow acetylator recombinant NAT2 protein was over 10-fold less stable than rapid acetylator recombinant NAT2. These studies demonstrate metabolic activation and deactivation by recombinant mouse NAT1, NAT2, and NAT3 proteins and confirm and extend previous studies on the molecular basis for the acetylation polymorphism in the mouse.  相似文献   

13.
Cell-free extracts of cellobiose-grown cells of the hyperthermophile Pyrococcus furiosus contain very high activities (19.8 U/mg) of a beta-glucosidase. The cytoplasmic enzyme was purified 22-fold to apparent homogeneity, indicating that the enzyme comprises nearly 5% of the total cell protein. The native beta-glucosidase has a molecular mass of 230 +/- 20 kDa, composed of 58 +/- 2-kDa subunits. The enzyme has a pI of 4.40. Thiol groups are not essential for activity, nor is the enzyme dependent on divalent cations or a high ionic strength. The enzyme shows optimum activity at pH 5.0 and 102-105 degrees C. From Lineweaver-Burk plots, Vmax values of 470 U/mg and 700 U/mg were found for cellobiose (Km = 20 mM) and p-nitrophenyl-beta-D-glucopyranoside (Km = 0.15 mM), respectively. The purified enzyme also exhibits high beta-galactosidase activity and beta-xylosidase activity, but shows no activity towards alpha-linked disaccharides or beta-linked polymers, like cellulose. The purified beta-glucosidase shows a remarkable thermostability with a half life of 85 h at 100 degrees C and 13 h at 110 degrees C.  相似文献   

14.
Although several variant alleles at the human NAT1 gene locus have been reported, their relationship to phenotypic variations in NAT1 function remains unclear. We have used in-vivo and invitro phenotyping tests, along with PCR-based cloning and heterologous expression, to investigate the extent of variation in NAT1 function and to characterize novel allelic variants at the NAT1 gene locus. The NAT1-selective substrate p-aminosalicylic acid (PAS) was used as a probe for NAT1 function. In-vivo PAS acetylation rates were estimated by determining the ratio of PAS to N-acetylated PAS (AcPAS) in urine and plasma following the oral ingestion of Nemasol Sodium. Excluding outliers, a 65-fold variation in the urinary AcPAS:PAS ratio was observed (n = 144), while a 5.6-fold variation in the plasma AcPAS:PAS ratio was seen in a subset (n = 19) of this sample. Urinary and plasma ratios correlated moderately (r = 0.74, p < 0.0005). One individual (case 244) had a marked impairment of PAS N-acetylation, with 10-fold lower urinary and plasma AcPAS:PAS ratios compared with other subjects. Biochemical investigations in whole blood lysates from case 244 suggested a NAT1 kinetic defect, with a 20-fold increased apparent K(m) for PAS and a 90-fold decreased Vmax for AcPAS formation. We subcloned, sequenced and expressed the protein-coding regions of the NAT1 alleles from case 244 and from seven other selected probands. Sequence analysis revealed the presence of two new variant alleles, designated as NAT1 x 14 and NAT1 x 15, in case 244, as well as one variant, NAT1 x 11, which has been observed in previous investigations. NAT1 x 14 contained a missense mutation (G560-->A) that is predicted to change a single amino acid (Arg187-->Gln), as well as two 3' non-coding region mutations (T1088-->A and C1095-->A) that have previously been observed in the NAT1 x 10 allelic variant. NAT1 x 15 had a single nonsense mutation (C559-->T; Arg187-->stop) and, thus, encodes a truncated protein. The activity of recombinant NAT1 14 mirrored the defective enzyme function in whole blood lysates from case 244, while NAT1 15 was completely inactive. Expressed NAT1 11, on the other hand, had identical activity to the wild type NAT1 4 allele, suggesting that the coding region mutations in this variant are functionally silent. The frequencies of NAT1 x 11, NAT1 x 14 and NAT1 x 15 were 0.021, 0.028 and 0.014 (n = 288 alleles), respectively, suggesting that they are relatively rare in our predominantly Caucasian sample.  相似文献   

15.
The effect of certain sulfhydryl reagents and metal ions were studied on the carnitine acetyltransferase (CAT) activity from the skeletal muscle of the Arabian camel (Camelus dromedarius). DTNB and iodoacetamide caused concentration and time dependent inhibition of CAT activity. The inhibition seen with these sulfhydryl reagents could be protected with prior incubation of the enzyme with acetyl-Co A, suggesting that these reagents might interact with the same site. Among the various metal ions tested, Cu2+, Zn2+ and Hg2+ caused total inhibition at very low concentrations, while, Mn2+, Mo6+ and Co2+ caused between 32-52% inhibition at 10 mM concentrations. Alkali earth divalent metals Mg2+ and Ca2+ caused less than 15% inhibition at this concentration. These metal ions are probably interacting at certain nucleophilic groups in the enzyme thus disrupting its tertiary structure.  相似文献   

16.
The aromatic amine 2-aminofluorene (2-AF) is metabolised by isolated rat liver cells to reactive species, thereby causing mutagenic effects in Salmonella typhimurium TA 1538 and evoking DNA-excision repair within the liver cells. The pathway leading to the production of metabolites mutagenic in Salmonella is likely to proceed via direct N-hydroxylation of 2-AF to N-hydroxy-2-aminofluorene (N-OH-2-AF). On the other hand, the formation of intermediates giving rise to hepatocellular DNA-repair is shown to depend upon N-acetylation of 2-AF to 2-acetylaminofluorene(2-AAF), whereas a subsequent conjugation reaction, most likely to be sulfate ester formation, is also essentially involved.  相似文献   

17.
Phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis catalyzes the hydrolysis of phosphatidylinositol (PI) in discrete steps: (i) an intramolecular phosphotransferase reaction to form inositol 1,2-(cyclic)-phosphate (cIP), followed by (ii) a cyclic phosphodiesterase activity that converts cIP to inositol 1-phosphate. Water-soluble cIP was used as the substrate to study the cyclic phosphodiesterase activity and interfacial behavior of PI-PLC. Different detergent micelles and phospholipid vesicles were used to examine if "interfacial activation" of the enzyme could occur toward a soluble substrate. Almost all detergents examined activated the enzyme at least 2-fold, with PC species yielding the largest increases in PI-PLC specific activity. Kinetic parameters were measured in the absence and presence of several representative detergents (e.g., Triton X-100 and diheptanoylphosphatidylcholine (diC7PC)). Gel filtration experiments showed that, under these conditions, the cIP did not partition to any measurable extent with these detergent micelles. The concentration at which half the maximum activation was observed occurred near the detergent CMC. Both Km and Vmax were altered by the presence of a surface: Km decreased to different degrees depending on the detergent, while Vmax increased substantially. The Km for cIP was 90 mM without detergent and decreased to 29 mM with diC7PC micelles added; Vmax increased almost 7-fold in the presence of diC7PC micelles. The enzyme efficiency (Vmax/Km) in the presence of diC7PC increased more than 21-fold, but it was still 20-fold lower than initial phosphotransferase activity for monomeric dihexanoylphosphatidylinositol. The poor efficiency of the cyclic phosphodiesterase activity is largely due to substrate binding affinity. The dependence of rate on substrate concentration exhibits cooperative behavior, especially without detergent. This cooperativity is discussed in terms of protein aggregation and ligand binding sites on the enzyme.  相似文献   

18.
Congenic Bio. 1.5/H-NAT2 Syrian hamster lines were constructed by introducing the NAT2r gene from MHA/SsLak inbred hamsters into a background BIO 1.5 Syrian inbred hamster line. Genetic identity of the Bio. 1.5/H-NAT2 congenic lines and nonidentity with the previously constructed Bio. 82.73/H-Pat congenic lines were determined by "DNA fingerprints" of genomic DNA derived from the different hamster lines. The N-acetylation capacity of the Bio. 1.5/H-NAT2 congenic hamster lines was clearly NAT2-dependent both in vivo and in vitro, with highest levels expressed in Bio. 1.5/H-NAT2r homozygous rapid acetylators, intermediate levels in Bio. 1.5/H-NAT2r/NAT2s heterozygous acetylators, and lowest levels in Bio. 1.5/H-NAT2s homozygous slow acetylators. The NAT2-dependent expression of N-acetyltransferase activity was evident toward p-aminobenzoic acid, 4-aminophenol, 2-aminofluorene, 4-aminobiphenyl, beta-naphthylamine, and 3,2'-dimethyl-4-amino-biphenyl in liver, kidney, colon, lung, and urinary bladder cytosols. The polymorphic acetyltransferase (NAT2) and the monomorphic acetyltransferase (NAT1) were isolated from hepatic cytosols and tested separately for their ability to catalyze arylamine N-acetyltransferase and N-hydroxyarylamine O-acetyltransferase activities. Both arylamine N-acetylation and N-hydroxyarylamine O-acetylation were clearly acetylator genotype-dependent when catalyzed by NAT2, and both were clearly acetylator genotype-independent when catalyzed by NAT1. NAT2/NAT1 activity ratios varied with the particular arylamine substrate acetylated. These studies show an important role for NAT2 acetylator genotype in Syrian hamster carcinogenic arylamine metabolism and confirm its role in the metabolic activation of N-hydroxyarylamines. The Bio. 1.5/H-NAT2 congenic lines provide a new model for investigating the precise role of the NAT2 gene locus in arylamine metabolism and toxicity.  相似文献   

19.
All known Mn-containing superoxide dismutases (MnSODs) have a highly conserved histidine (His-30 in Escherichia coli FeSOD) in the active-site channel, and nearly all have an active-site arginine (Arg-170) that has been proposed to play a combined structural and functional role [Chan et al., Arch. Biochem. Biophys. 279, 195-201 (1990)]. In Saccharomyces cerevisiae MnSOD, the active-site arginine is replaced by a lysine. The S. cerevisiae MnSOD gene has been cloned and expressed in E. coli, and H30A and K170R site-specific mutants have been prepared. The purified recombinant native (RN) and mutant enzymes were compared to one another and to the native enzyme purified from S. cerevisiae (SC) in terms of activity, temperature stability, and sensitivity to 2,4,6-trinitrobenzenesulfonate (TNBS) and phenylglyoxal (PG). All enzymes had high specific activities (SC = 5000, RN = 5600, H30A = 4500, K170R = 4600) (U/mg, using the pyrogallol assay). SC, RN, and H30A were very stable at 75 degreesC (pH 8.0), with half-lives of 4.7, 2.8, and 2.7 h, respectively, while K170R had a much greater temperature lability, with a half-life of 0.36 h under these conditions. TNBS (0.5 mM, pH 9.0, 25 degreesC) rapidly inactivated SC, RN, and H30A, with half-lives of 3. 5, 5.1, and 5.5 min, respectively, but only slowly inactivated K170R, with a half-life of 101 min. PG (20 mM, pH 9.0, 25 degreesC) caused very slow inactivation of SC, RN, and H30A by biphasic kinetics, and each enzyme retained >/=25% activity after 3 h of modification. K170R, on the other hand, was completely inactivated by PG under these conditions by first-order kinetics, with a half-life of 7.0 min. The data suggest that His-30, a residue highly conserved in the active-site channel of MnSODs and FeSODs, does not play a crucial role in catalysis or stability. In addition, Lys-170, a residue that is almost always arginine in the numerous other MnSODs and FeSODs sequenced to date, can be replaced by arginine with no loss of catalytic activity, but K170R is less stable and Arg-170 in this mutant is more exposed than the corresponding arginine in other SODs. RN and SC showed some surprising differences. Thus, while the specific activities of RN and SC are very similar, SC is more stable to inactivation at 75 degreesC, and less susceptible to inactivation by phenylglyoxal, than RN. These data suggest that there may be slight differences in the tertiary structures of SC, the native enzyme expressed in S. cerevisiae, and RN, the recombinant native enzyme expressed in E. coli.  相似文献   

20.
Inorganic pyrophosphatase (EC 3.6.1.1.) has been isolated from the archaebacterium Methanobacterium thermoautotrophicum (strain delta H). The enzyme was purified 850-fold in three steps to electrophoretic homogeneity. The soluble pyrophosphatase consists of four identical subunits: the molecular mass of the native enzyme estimated by gel filtration was approx. 100 kDa and denaturing polyacrylamide gel electrophoresis gave a single band of 25 kDa. The enzyme also may occur as an active dimer formed by dissociation of the tetramer. The pyrophosphate showed an optimal activity at 70 degrees C and a pH of 7.7 (at 60 degrees C) and was not influenced by dithiothreitol, sodium dithionite or potassium chloride. The enzyme was very specific for pyrophosphate (PPi) and Mg2+. Magnesium could be partially replaced by Co2+ (15%). The reaction was inhibited for 60% by 1 mM Mn2+ in the presence of 24 mM Mg2+. In addition, the enzyme was inhibited by potassium fluoride (50% at 0.9 mM). Kinetic analysis revealed positive co-operativity for both Mg2+ and PPi with Hill coefficients of 3.3 and 2.0, respectively. Under the experimental conditions at which the enzyme was present as its dimer, the apparent Km of PPi and magnesium were determined and were approx. 0.16 mM and 4.9 mM, respectively; Vmax was estimated at about 570 U/mg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号