首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aggregation‐induced emission (AIE) is a beneficial strategy for generating highly effective solid‐state molecular luminescence without suffering losses in quantum yield. However, the majority of reported AIE‐active molecules exhibit only strong fluorescence, which is not ideal for electrical excitation in organic light‐emitting diodes (OLEDs). By introducing various substituent groups onto the biscarbazole compound, a series of molecular materials with aggregation‐induced phosphorescence (AIP) is designed, which exhibits two distinctly different phosphorescence bands and an absolute solid‐state room‐temperature phosphorescence quantum yield up to 64%. Taking advantage of the AIE feature, the AIP molecules are fabricated into OLEDs as a homogeneous light‐emitting layer, which allows for relatively small efficiency roll‐off and shows an external electroluminescence quantum yield of up to 5.8%, more than the theoretical limit for purely fluorescent OLED devices. The design showcases a promising strategy for the production of cost‐effective and highly efficient OLED technology.  相似文献   

2.
3.
Emissive Ir(III) metal complexes possessing two tridentate chelates (bis‐tridentate) are known to be more robust compared to those with three bidentate chelates (tris‐bidentate). Here, the deep‐blue‐emitting, bis‐tridentate Ir(III) metal phosphors bearing both the dicarbene pincer ancillary such as 2,6‐diimidazolylidene benzene and the 6‐pyrazolyl‐2‐phenoxylpyridine chromophoric chelate are synthesized. A deep‐blue organic light‐emitting diode from one phosphor exhibits Commission Internationale de l'Eclairage (CIE(x ,y )) coordinates of (0.15, 0.17) with maximum external quantum efficiency (max. EQE) of 20.7% and EQE = 14.6% at the practical brightness of 100 cd m?2.  相似文献   

4.
5.
6.
Degradation in organic light‐emitting diodes (OLEDs) is a complex problem. Depending upon the materials and the device architectures used, the degradation mechanism can be very different. In this Progress Report, using examples in both small molecule and polymer OLEDs, the different degradation mechanisms in two types of devices are examined. Some of the extrinsic and intrinsic degradation mechanisms in OLEDs are reviewed, and recent work on degradation studies of both small‐molecule and polymer OLEDs is presented. For small‐molecule OLEDs, the operational degradation of exemplary fluorescent devices is dominated by chemical transformations in the vicinity of the recombination zone. The accumulation of degradation products results in coupled phenomena of luminance‐efficiency loss and operating‐voltage rise. For polymer OLEDs, it is shown how the charge‐transport and injection properties affect the device lifetime. Further, it is shown how the charge balance is controlled by interlayers at the anode contact, and their effects on the device lifetime are discussed.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Degradation in organic light‐emitting diodes (OLEDs) is a complex problem. Depending upon the materials and the device architectures used, the degradation mechanism can be very different. In this Progress Report, using examples in both small molecule and polymer OLEDs, the different degradation mechanisms in two types of devices are examined. Some of the extrinsic and intrinsic degradation mechanisms in OLEDs are reviewed, and recent work on degradation studies of both small‐molecule and polymer OLEDs is presented. For small‐molecule OLEDs, the operational degradation of exemplary fluorescent devices is dominated by chemical transformations in the vicinity of the recombination zone. The accumulation of degradation products results in coupled phenomena of luminance‐efficiency loss and operating‐voltage rise. For polymer OLEDs, it is shown how the charge‐transport and injection properties affect the device lifetime. Further, it is shown how the charge balance is controlled by interlayers at the anode contact, and their effects on the device lifetime are discussed.  相似文献   

15.
16.
Organic light‐emitting diodes (OLEDs) have rapidly progressed in recent years due to their unique characteristics and potential applications in flat panel displays. Significant advancements in top‐emitting OLEDs have driven the development of large‐size screens and microdisplays with high resolution and large aperture ratio. After a brief introduction to the architecture and types of top‐emitting OLEDs, the microcavity theory typically used in top‐emitting OLEDs is described in detail here. Then, methods for producing and understanding monochromatic (red, green, and blue) and white top‐emitting OLEDs are summarized and discussed. Finally, the status of display development based on top‐emitting OLEDs is briefly addressed.  相似文献   

17.
18.
19.
Flexible inorganic‐based micro light‐emitting diodes (µLEDs) are emerging as a significant technology for flexible displays, which is an important area for bilateral visual communication in the upcoming Internet of Things era. Conventional flexible lateral µLEDs have been investigated by several researchers, but still have significant issues of power consumption, thermal stability, lifetime, and light‐extraction efficiency on plastics. Here, high‐performance flexible vertical GaN light‐emitting diodes (LEDs) are demonstrated by silver nanowire networks and monolithic fabrication. Transparent, ultrathin GaN LED arrays adhere to a human fingernail and stably glow without any mechanical deformation. Experimental studies provide outstanding characteristics of the flexible vertical μLEDs (f‐VLEDs) with high optical power (30 mW mm?2), long lifetime (≈12 years), and good thermal/mechanical stability (100 000 bending/unbending cycles). The wireless light‐emitting system on the human skin is successfully realized by transferring the electrical power f‐VLED. Finally, the high‐density GaN f‐VLED arrays are inserted onto a living mouse cortex and operated without significant histological damage of brain.  相似文献   

20.
The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shifting, as these new materials offer the possibility of developing low‐cost lighting and displays. Here, a comprehensive review of TADF materials is presented, with a focus on linking their optoelectronic behavior with the performance of the organic light‐emitting diode (OLED) and related EL devices. TADF emitters are cross‐compared within specific color ranges, with a focus on blue, green–yellow, orange–red, and white OLEDs. Organic small‐molecule, dendrimer, polymer, and exciplex emitters are all discussed within this review, as is their use as host materials. Correlations are provided between the structure of the TADF materials and their optoelectronic properties. The success of TADF materials has ushered in the next generation of OLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号