首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electronic structure greatly determines the band structures and the charge carrier transport properties of semiconducting photocatalysts and consequently their photocatalytic activities. Here, by simply calcining the mixture of graphitic carbon nitride (g‐C3N4) and sodium borohydride in an inert atmosphere, boron dopants and nitrogen defects are simultaneously introduced into g‐C3N4. The resultant boron‐doped and nitrogen‐deficient g‐C3N4 exhibits excellent activity for photocatalytic oxygen evolution, with highest oxygen evolution rate reaching 561.2 µmol h?1 g?1, much higher than previously reported g‐C3N4. It is well evidenced that with conduction and valence band positions substantially and continuously tuned by the simultaneous introduction of boron dopants and nitrogen defects into g‐C3N4, the band structures are exceptionally modulated for both effective optical absorption in visible light and much increased driving force for water oxidation. Moreover, the engineered electronic structure creates abundant unsaturated sites and induces strong interlayer C–N interaction, leading to efficient electron excitation and accelerated charge transport. In the present work, a facile approach is successfully demonstrated to engineer the electronic structures and the band structures of g‐C3N4 with simultaneous introduction of dopants and defects for high‐performance photocatalytic oxygen evolution, which can provide informative principles for the design of efficient photocatalysis systems for solar energy conversion.  相似文献   

2.
3.
Rational design of high active and robust nonprecious metal catalysts with excellent catalytic efficiency in oxygen evolution reaction (OER) is extremely vital for making the water splitting process more energy efficient and economical. Among these noble metal‐free catalysts, transition‐metal‐based nanomaterials are considered as one of the most promising OER catalysts due to their relatively low‐cost intrinsic activities, high abundance, and diversity in terms of structure and morphology. Herein, a facile sugar‐blowing technique and low‐temperature phosphorization are reported to generate 3D self‐supported metal involved carbon nanostructures, which are termed as Co2P@Co/nitrogen‐doped carbon (Co2P@Co/N‐C). By capitalizing on the 3D porous nanostructures with high surface area, homogeneously dispersed active sites, the intimate interaction between active sites, and 3D N‐doped carbon, the resultant Co2P@Co/N‐C exhibits satisfying OER performance superior to CoO@Co/N‐C, delivering 10 mA cm?2 at overpotential of 0.32 V. It is worth noting that in contrast to the substantial current density loss of RuO2, Co2P@Co/N‐C shows much enhanced catalytic activity during the stability test and a 1.8‐fold increase in current density is observed after stability test. Furthermore, the obtained Co2P@Co/N‐C can also be served as an excellent nonprecious metal catalyst for methanol and glucose electrooxidation in alkaline media, further extending their potential applications.  相似文献   

4.
Semiconductor‐based photocatalysis is considered to be an attractive way for solving the worldwide energy shortage and environmental pollution issues. Since the pioneering work in 2009 on graphitic carbon nitride (g‐C3N4) for visible‐light photocatalytic water splitting, g‐C3N4‐based photocatalysis has become a very hot research topic. This review summarizes the recent progress regarding the design and preparation of g‐C3N4‐based photocatalysts, including the fabrication and nanostructure design of pristine g‐C3N4, bandgap engineering through atomic‐level doping and molecular‐level modification, and the preparation of g‐C3N4‐based semiconductor composites. Also, the photo­catalytic applications of g‐C3N4‐based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non‐noble‐metal cocatalysts, and Z‐scheme heterojunctions. Finally, the concluding remarks are presented and some perspectives regarding the future development of g‐C3N4‐based photocatalysts are highlighted.  相似文献   

5.
6.
石墨相氮化碳(Graphitic carbon nitride,g-C_3N_4)是一种由碳(C)和氮(N)元素组成的共轭聚合物材料,具有平面的三嗪聚合物(Poly(tri-s-triazine))网络结构。比起大部分其他碳材料,氮化碳是富电子体,因而赋予了其特殊的性质。然而目前对于g-C_3N_4的研究主要集中在其相关催化作用(光催化,电催化和光电催化),对于g-C_3N_4的吸附作用的研究相对很少涉及。本文探讨了g-C_3N_4材料在吸附领域中的应用,简要综述了G-C_3N_4的性质、制备方法及其作为吸附材料的应用现状,最后展望了石墨型氮化碳在吸附应用领域的未来发展方向。  相似文献   

7.
Graphitic carbon nitrides (g‐C3N4) are a class of 2D polymeric materials mainly composed of carbon and nitrogen atoms. g‐C3N4 are attracting dramatically increasing interest in the areas of sensing, imaging, and therapy, due to their unique optical and electronic properties. Here, the luminescent properties (mainly includes photoluminescence and electrochemiluminescence), and catalytic and photoelectronic properties related to sensing and therapy applications of g‐C3N4 materials are reviewed. Furthermore, the fabrication and advantages of sensing, imaging and therapy systems based on g‐C3N4 materials are summarized. Finally, the future perspectives for developing the sensing, imaging and therapy applications of the g‐C3N4 materials are discussed.  相似文献   

8.
9.
Codoping of N and O in ultrathin graphitic carbon nitride (g‐C3N4) nanosheets leads to an inner electric field. This field restrains the recombination of photogenerated carriers and, thus, enhances hydrogen evolution. The layered structure of codoped g‐C3N4 nanosheets (N‐O‐CNNS) not only provides abundant sites of contact with the reaction medium, but also decreases the distance over which the photogenerated electron–hole pairs are transported to the reaction interface. Quantum confinement in the ultrathin structure results in an increased bandgap and makes the photocatalytic reaction more favorable than bulk g‐C3N4. Under visible light irradiation, N‐O‐CNNS with 3 wt% Pt achieves a hydrogen evolution rate of 9.2 mmol g?1 h?1 and a value of 46.9 mmol g?1 h?1 under AM1.5 with 5 wt% Pt. Thus, this work paves the way for designing efficient nanostructures with increased separation/transfer efficiency of photogenerated carriers and, hence, increased photocatalytic activities.  相似文献   

10.
Nitrogen‐doped carbon morphologies have been proven to be better alternatives to Pt in polymer‐electrolyte membrane (PEM) fuel cells. However, efficient modulation of the active sites by the simultaneous escalation of the porosity and nitrogen doping, without affecting the intrinsic electrical conductivity, still remains to be solved. Here, a simple strategy is reported to solve this issue by treating single‐walled carbon nanohorn (SWCNH) with urea at 800 °C. The resulting nitrogen‐doped carbon nanohorn shows a high surface area of 1836 m2 g?1 along with an increased electron conductivity, which are the pre‐requisites of an electrocatalyst. The nitrogen‐doped nanohorn annealed at 800 °C (N‐800) also shows a high oxygen reduction activity (ORR). Because of the high weight percentage of pyridinic nitrogen coordination in N‐800, the present catalyst shows a clear 4‐electron reduction pathway at only 50 mV overpotential and 16 mV negative shift in the half‐wave potential for ORR compared to Pt/C along with a high fuel selectivity and electrochemical stability. More importantly, a membrane electrode assembly (MEA) based on N‐800 provides a maximum power density of 30 mW cm?2 under anion‐exchange membrane fuel cell (AEMFC) testing conditions. Thus, with its remarkable set of physical and electrochemical properties, this material has the potential to perform as an efficient Pt‐free electrode for AEMFCs.  相似文献   

11.
To develop a non-precious highly efficient cocatalyst to replace Pt on graphitic carbon nitride (g-C3N4) for solar H2 production is great significant, but still remains a huge challenge. The emerging single-atom catalyst presents a promising strategy for developing highly efficient non-precious cocatalyst owing to its unique adjustability of local coordination environment and electronic structure. Herein, this work presents a facile approach to achieve single Ni sites (Ni1-N2S) with unique local coordination structure featuring one Ni atom coordinated with two nitrogen atoms and one sulfur atom, confirmed by high-angle annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, and density functional theory calculation. Thanks to the unique electron structure of Ni1-N2S sites, the 1095 µmol g−1 h−1 of high H2 evolution rate with 4.1% of apparent quantum yield at 420 nm are achieved. This work paves a pathway for designing a highly efficient non-precious transition metal cocatalyst for photocatalytic H2 evolution.  相似文献   

12.
Exploration of economical electrocatalysts for highly efficient and stable oxygen reduction reaction (ORR) is believed to be essential for diverse future renewable energy applications. Herein, cobalt sulfide nanowire core encapsulated in a N, S codoped graphitic carbon shell (CoS NWs@NSC) is successfully fabricated via the calcination of polydopamine‐coated Co(CO3)0.5(OH)0.11H2O NWs with sulfur powder under argon atmosphere. The uniform encapsulation of CoS core by N, S codoped graphitic carbon shell favors the interaction of the core–shell structure for generating stable and numerous ORR active sites homogeneously dispersed throughout the materials. Meanwhile, the wire‐like CoS NWs@NSC stacks to form 3D mesoporous conductive networks, which improves the mass and charge transport capability of catalyst. Accordingly, the resultant CoS NWs@NSC electrocatalysts possess excellent ORR activity through the four‐electron pathway with superior stability and methanol tolerance over the Pt/C in 0.1 m KOH. This strategy can offer inspiration for designing and fabricating novel core–shell‐structured nanomaterials with active sites derived from uniform morphology as potential electrocatalysts for various vital renewable energy devices.  相似文献   

13.
14.
Scalable and sustainable solar hydrogen production via photocatalytic water splitting requires extremely active and stable light‐harvesting semiconductors to fulfill the stringent requirements of suitable energy band position and rapid interfacial charge transfer process. Motivated by this point, increasing attention has been given to the development of photocatalysts comprising intimately interfaced photoabsorbers and cocatalysts. Herein, a simple one‐step approach is reported to fabricate a high‐efficiency photocatalytic system, in which single‐site dispersed iron atoms are rationally integrated on the intrinsic structure of the porous crimped graphitic carbon nitride (g‐C3N4) polymer. A detailed analysis of the formation process shows that a stable complex is generated by spontaneously coordinating dicyandiamidine nitrate with iron ions in isopropanol, thus leading to a relatively complicated polycondensation reaction upon thermal treatment. The correlation of experimental and computational results confirms that optimized electronic structures of Fe@g‐C3N4 with an appropriate d‐band position and negatively shifting Fermi level can be achieved, which effectively gains the reducibility of electrons and creates more active sites for the photocatalytic reactions. As a result, the Fe@g‐C3N4 exhibits a highlighted intramolecular synergistic effect, performing greatly enhanced solar‐photon‐driven activities, including excellent photocatalytic hydrogen evolution rate (3390 µmol h?1 g?1, λ > 420 nm) and a reliable apparent quantum efficiency value of 6.89% at 420 nm.  相似文献   

15.
16.
17.
3D materials are considered promising for photocatalytic applications in air purification because of their large surface areas, controllability, and recyclability. Here, a series of aerogels consisting of graphitic‐carbon nitride (g‐C3N4) modified with a perylene imide (PI) and graphene oxide (GO) are prepared for nitric oxide (NO) removal under visible‐light irradiation. All of the photocatalysts exhibit excellent activity in NO removal because of the strong light absorption and good planarity of PI–g‐C3N4 coupled with the favorable charge transport properties of GO, which slow the recombination of electron–hole pairs. The aerogel containing thiophene displays the most efficient NO removal of the aerogel series, with a removal ratio of up to 66%. Density functional theory calculations are conducted to explain this result and recycling experiments are carried out to verify the stability and recyclability of these photocatalysts.  相似文献   

18.
The electrochemical behaviors of current graphitic carbons are seriously restricted by its low surface area and insufficient interlayer spacing for sodium‐ion batteries. Here, sulfur‐doped graphitic carbon nanosheets are reported by utilizing sodium dodecyl sulfate as sulfur resource and graphitization additive, showing a controllable interlayer spacing range from 0.38 to 0.41 nm and a high specific surface area up to 898.8 m2 g?1. The obtained carbon exhibits an extraordinary electrochemical activity for sodium‐ion storage with a large reversible capacity of 321.8 mAh g?1 at 100 mA g?1, which can be mainly attributed to the expanded interlayer spacing of the carbon materials resulted from the S‐doping. Impressively, superior rate capability of 161.8 mAh g?1 is reserved at a high current density of 5 A g?1 within 5000 cycles, which should be ascribed to the fast surface‐induced capacitive behavior derived from its high surface area. Furthermore, the storage processes are also quantitatively evaluated, confirming a mixed storage mechanism of diffusion‐controlled intercalation behavior and surface‐induced capacitive behavior. This study provides a novel route for rationally designing various carbon‐based anodes with enhanced rate capability.  相似文献   

19.
The development of efficient photocatalysts for the degradation of organic pollutants and production of hydrogen peroxide (H2O2) is an attractive two‐in‐one strategy to address environmental remediation concerns and chemical resource demands. Graphitic carbon nitride (g‐C3N4) possesses unique electronic and optical properties. However, bulk g‐C3N4 suffers from inefficient sunlight absorption and low carrier mobility. Once exfoliated, ultrathin nanosheets of g‐C3N4 attain much intriguing photocatalytic activity. Herein, a mussel‐inspired strategy is developed to yield silver‐decorated ultrathin g‐C3N4 nanosheets (Ag@U‐g‐C3N4‐NS). The optimum Ag@U‐g‐C3N4‐NS photocatalyst exhibits enhanced electrochemical properties and excellent performance for the degradation of organic pollutants. Due to the photoformed valence band holes and selective two‐electron reduction of O2 by the conduction band electrons, it also renders an efficient, economic, and green route to light‐driven H2O2 production with an initial rate of 0.75 × 10?6 m min?1. The improved photocatalytic performance is primarily attributed to the large specific surface area of the U‐g‐C3N4‐NS layer, the surface plasmon resonance effect induced by Ag nanoparticles, and the cooperative electronic capture properties between Ag and U‐g‐C3N4‐NS. Consequently, this unique photocatalyst possesses the extended absorption region, which effectively suppresses the recombination of electron–hole pairs and facilitates the transfer of electrons to participate in photocatalytic reactions.  相似文献   

20.
Hydrogen evolution reaction (HER) from water electrolysis is an attractive technique developed in recent years for cost‐effective clean energy. Although considerable efforts have been paid to create efficient catalysts for HER, the development of an affordable HER catalyst with superior performance under mild conditions is still highly desired. In this work, metal–organic frameworks (MOFs)‐templated strategy is proposed for in situ coupling of cobalt phosphide (CoP) polyhedrons nanoparticles and carbon nanotubes (CNTs). Due to the synergistic catalytic effect between CoP polyhedrons and CNTs, the as‐prepared CoP–CNTs hybrids show excellent HER performance. The resultant CoP–CNTs demonstrate excellent HER activity in 0.5 m H2SO4 with Tafel slope of 52 mV dec?1, small onset overpotential of ≈64 mV, and a low overpotential of ≈139 mV at 10 mA cm?2. Additionally, the catalyst also manifests superior durability in acid media. Considering the structure diversity of MOFs, the strategy presented here can be extended for synthesizing other well‐defined metal phosphides–CNTs hybrids, which may be used in the fields of catalysis, energy conversion and storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号