首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yan Feng  Feng Hou 《Materials Letters》2009,63(15):1338-1340
Chromium was incorporated into lithium trivanadate by an aqueous reaction followed by heating at 100 °C. This Cr doped LiV3O8 as a cathode for lithium ion batteries exhibits 269.9 mAh g− 1 at first discharge cycle and remains 254.8 mAh g− 1 at cycle 100, with a charge-discharge current density of 150 mA g− 1 in the voltage range of 1.8-4.0 V. The Cr-LiV3O8 cathode show excellent discharge capacity, with the retention of 94.4% after 100 cycles. These result values are higher than previous reports indicating that Cr-LiV3O8 prepared by our low temperature synthesis method is a promising cathode material for rechargeable lithium ion batteries. The enhanced discharge capacity and cycle stability of Cr-LiV3O8 cathode indicate that chromium atoms promote lithium transfer or intercalation/deintercalation during the electrochemical cycles and improve the electrochemical performances of LiV3O8 cathode.  相似文献   

2.
A high capacity cathode is the key to the realization of high‐energy‐density lithium‐ion batteries. The anionic oxygen redox induced by activation of the Li2MnO3 domain has previously afforded an O3‐type layered Li‐rich material used as the cathode for lithium‐ion batteries with a notably high capacity of 250–300 mAh g?1. However, its practical application in lithium‐ion batteries has been limited due to electrodes made from this material suffering severe voltage fading and capacity decay during cycling. Here, it is shown that an O2‐type Li‐rich material with a single‐layer Li2MnO3 superstructure can deliver an extraordinary reversible capacity of 400 mAh g?1 (energy density: ≈1360 Wh kg?1). The activation of a single‐layer Li2MnO3 enables stable anionic oxygen redox reactions and leads to a highly reversible charge–discharge cycle. Understanding the high performance will further the development of high‐capacity cathode materials that utilize anionic oxygen redox processes.  相似文献   

3.
Manganese oxides (MnOx) are promising anode materials for lithium ion batteries, but they generally exhibit mediocre performances due to intrinsic low ionic conductivity, high polarization, and poor stability. Herein, yolk–shell nanorods comprising of nitrogen‐doped carbon (N–C) coating on manganese monoxide (MnO) coupled with zinc manganate (ZnMn2O4) nanoparticles are manufactured via one‐step carbonization of α‐MnO2/ZIF‐8 precursors. When evaluated as anodes for lithium ion batteries, MnO@ZnMn2O4/N–C exhibits an reversible capacity of 803 mAh g?1 at 50 mA g?1 after 100 cycles, excellent cyclability with a capacity of 595 mAh g?1 at 1000 mAg?1 after 200 cycles, as well as better rate capability compared with those non‐N–C shelled manganese oxides (MnOx). The outstanding electrochemical performance is attributed to the unique yolk–shell nanorod structure, the coating effect of N–C and nanoscale size.  相似文献   

4.
Ti–Nb–O binary oxide materials represent a family of promising intercalating anode materials for lithium‐ion batteries. In additional to their excellent capacities (388–402 mAh g–1), these materials show excellent safety characteristics, such as an operating potential above the lithium plating voltage and minimal volume change. Herein, this study reports a new member in the Ti–Nb–O family, Ti2Nb14O39, as an advanced anode material. Ti2Nb14O39 porous spheres (Ti2Nb14O39‐S) exhibit a defective shear ReO3 crystal structure with a large unit cell volume and a large amount of cation vacancies (0.85% vs all cation sites). These morphological and structural characteristics allow for short electron/Li+‐ion transport length and fast Li+‐ion diffusivity. Consequently, the Ti2Nb14O39‐S material delivers significant pseudocapacitive behavior and excellent electrochemical performances, including high reversible capacity (326 mAh g?1 at 0.1 C), high first‐cycle Coulombic efficiency (87.5%), safe working potential (1.67 V vs Li/Li+), outstanding rate capability (223 mAh g–1 at 40 C) and durable cycling stability (only 0.032% capacity loss per cycle over 200 cycles at 10 C). These impressive results clearly demonstrate that Ti2Nb14O39‐S can be a promising anode material for fast‐charging, high capacity, safe and stable lithium‐ion batteries.  相似文献   

5.
The development of high‐capacity, Earth‐abundant, and stable cathode materials for robust aqueous Zn‐ion batteries is an ongoing challenge. Herein, ultrathin nickel cobaltite (NiCo2O4) nanosheets with enriched oxygen vacancies and surface phosphate ions (P–NiCo2O4‐x) are reported as a new high‐energy‐density cathode material for rechargeable Zn‐ion batteries. The oxygen‐vacancy and surface phosphate‐ion modulation are achieved by annealing the pristine NiCo2O4 nanosheets using a simple phosphating process. Benefiting from the merits of substantially improved electrical conductivity and increased concentration of active sites, the optimized P–NiCo2O4‐x nanosheet electrode delivers remarkable capacity (309.2 mAh g?1 at 6.0 A g?1) and extraordinary rate performance (64% capacity retention at 60.4 A g?1). Moreover, based on the P–NiCo2O4‐x cathode, our fabricated P–NiCo2O4‐x//Zn battery presents an impressive specific capacity of 361.3 mAh g?1 at the high current density of 3.0 A g?1 in an alkaline electrolyte. Furthermore, extremely high energy density (616.5 Wh kg?1) and power density (30.2 kW kg?1) are also achieved, which outperforms most of the previously reported aqueous Zn‐ion batteries. This ultrafast and high‐energy aqueous Zn‐ion battery is promising for widespread application to electric vehicles and intelligent devices.  相似文献   

6.
Molybdenum ditelluride nanosheets encapsulated in few‐layer graphene (MoTe2/FLG) are synthesized by a simple heating method using Te and Mo powder and subsequent ball milling with graphite. The as‐prepared MoTe2/FLG nanocomposites as anode materials for lithium‐ion batteries exhibit excellent electrochemical performance with a highly reversible capacity of 596.5 mAh g?1 at 100 mA g?1, a high rate capability (334.5 mAh g?1 at 2 A g?1), and superior cycling stability (capacity retention of 99.5% over 400 cycles at 0.5 A g?1). Ex situ X‐ray diffraction and transmission electron microscopy are used to explore the lithium storage mechanism of MoTe2. Moreover, the electrochemical performance of a MoTe2/FLG//0.35Li2MnO3·0.65LiMn0.5Ni0.5O2 full cell is investigated, which displays a reversible capacity of 499 mAh g?1 (based on the MoTe2/FLG mass) at 100 mA g?1 and a capacity retention of 78% over 50 cycles, suggesting the promising application of MoTe2/FLG for lithium‐ion storage. First‐principles calculations exhibit that the lowest diffusion barrier (0.18 eV) for lithium ions along pathway III in the MoTe2 layered structure is beneficial for improving the Li intercalation/deintercalation property.  相似文献   

7.
Fast lithium ion transport with a high current density is critical for thick sulfur cathodes, stemming mainly from the difficulties in creating effective lithium ion pathways in high sulfur content electrodes. To develop a high‐rate cathode for lithium–sulfur (Li–S) batteries, extenuation of the lithium ion diffusion barrier in thick electrodes is potentially straightforward. Here, a phyllosilicate material with a large interlamellar distance is demonstrated in high‐rate cathodes as high sulfur loading. The interlayer space (≈1.396 nm) incorporated into a low lithium ion diffusion barrier (0.155 eV) significantly facilitates lithium ion diffusion within the entire sulfur cathode, and gives rise to remarkable nearly sulfur loading‐independent cell performances. When combined with 80% sulfur contents, the electrodes achieve a high capacity of 865 mAh g?1 at 1 mA cm?2 and a retention of 345 mAh g?1 at a high discharging/charging rate of 15 mA cm?2, with a sulfur loading up to 4 mg. This strategy represents a major advance in high‐rate Li–S batteries via the construction of fast ions transfer paths toward real‐life applications, and contributes to the research community for the fundamental mechanism study of loading‐independent electrode systems.  相似文献   

8.
Conventional lithium–sulfur batteries often suffer from fatal problems such as high flammability, polysulfide shuttling, and lithium dendrites growth. Here, highly‐safe lithium–sulfur batteries based on flame‐retardant electrolyte (dimethoxyether/1,1,2,2‐tetrafluoroethyl 2,2,3,3‐tetrafluoropropyl ether) coupled with functional separator (nanoconductive carbon‐coated cellulose nonwoven) to resolve aforementioned bottle‐neck issues are demonstrated. It is found that this flame‐retardant electrolyte exhibits excellent flame retardancy and low solubility of polysulfide. In addition, Li/Li symmetrical cells using such flame‐retardant electrolyte deliver extraordinary long‐term cycling stability (less than 10 mV overpotential) for over 2500 h at 1.0 mA cm?2 and 1.0 mAh cm?2. Moreover, bare sulfur cathode–based lithium–sulfur batteries using this flame retardant electrolyte coupled with nanoconductive carbon‐coated cellulose separator can retain 83.6% discharge capacity after 200 cycles at 0.5 C. Under high charge/discharge rate (4 C), lithium–sulfur cells still show high charge/discharge capacity of ≈350 mAh g?1. Even at an elevated temperature of 60 °C, discharge capacity of 870 mAh g?1 can be retained. More importantly, high‐loading bare sulfur cathode (4 mg cm?2)–based lithium–sulfur batteries can also deliver high charge/discharge capacity over 806 mAh g?1 after 56 cycles. Undoubtedly, the strategy of flame retardant electrolyte coupled with carbon‐coated separator enlightens highly safe lithium–sulfur batteries at a wide range of temperature.  相似文献   

9.
Potassium‐ion batteries (PIBs) are one of the emerging energy‐storage technologies due to the low cost of potassium and theoretically high energy density. However, the development of PIBs is hindered by the poor K+ transport kinetics and the structural instability of the cathode materials during K+ intercalation/deintercalation. In this work, birnessite nanosheet arrays with high K content (K0.77MnO2?0.23H2O) are prepared by “hydrothermal potassiation” as a potential cathode for PIBs, demonstrating ultrahigh reversible specific capacity of about 134 mAh g?1 at a current density of 100 mA g?1, as well as great rate capability (77 mAh g?1 at 1000 mA g?1) and superior cycling stability (80.5% capacity retention after 1000 cycles at 1000 mA g?1). With the introduction of adequate K+ ions in the interlayer, the K‐birnessite exhibits highly stabilized layered structure with highly reversible structure variation upon K+ intercalation/deintercalation. The practical feasibility of the K‐birnessite cathode in PIBs is further demonstrated by constructing full cells with a hard–soft composite carbon anode. This study highlights effective K+‐intercalation for birnessite to achieve superior K‐storage performance for PIBs, making it a general strategy for developing high‐performance cathodes in rechargeable batteries beyond lithium‐ion batteries.  相似文献   

10.
Potassium‐ion batteries (PIBs) configurated by organic electrodes have been identified as a promising alternative to lithium‐ion batteries. Here, a porous organic Polyimide@Ketjenblack is demonstrated in PIBs as a cathode, which exhibits excellent performance with a large reversible capacity (143 mAh g?1 at 100 mA g?1), high rate capability (125 and 105 mAh g?1 at 1000 and 5000 mA g?1), and long cycling stability (76% capacity retention at 2000 mA g?1 over 1000 cycles). The domination of fast capacitive‐like reaction kinetics is verified, which benefits from the porous structure synthesized using in situ polymerization. Moreover, a renewable and low‐cost full cell is demonstrated with superior rate behavior (106 mAh g?1 at 3200 mA g?1). This work proposes a strategy to design polymer electrodes for high‐performance organic PIBs.  相似文献   

11.
Fe2O3 is regarded as a promising anode material for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs) due to its high specific capacity. The large volume change during discharge and charge processes, however, induces significant cracking of the Fe2O3 anodes, leading to rapid fading of the capacity. Herein, a novel peapod‐like nanostructured material, consisting of Fe2O3 nanoparticles homogeneously encapsulated in the hollow interior of N‐doped porous carbon nanofibers, as a high‐performance anode material is reported. The distinctive structure not only provides enough voids to accommodate the volume expansion of the pea‐like Fe2O3 nanoparticles but also offers a continuous conducting framework for electron transport and accessible nanoporous channels for fast diffusion and transport of Li/Na‐ions. As a consequence, this peapod‐like structure exhibits a stable discharge capacity of 1434 mAh g?1 (at 100 mA g?1) and 806 mAh g?1 (at 200 mA g?1) over 100 cycles as anode materials for LIBs and SIBs, respectively. More importantly, a stable capacity of 958 mAh g?1 after 1000 cycles and 396 mAh g?1 after 1500 cycles can be achieved for LIBs and SIBs, respectively, at a large current density of 2000 mA g?1. This study provides a promising strategy for developing long‐cycle‐life LIBs and SIBs.  相似文献   

12.
High and balanced electronic and ionic transportation networks with nanoscale distribution in solid‐state cathodes are crucial to realize high‐performance all‐solid‐state lithium batteries. Using Cu2SnS3 as a model active material, such a kind of solid‐state Cu2SnS3@graphene‐Li7P3S11 nanocomposite cathodes are synthesized, where 5–10 nm Cu2SnS3 nanoparticles homogenously anchor on the graphene nanosheets, while the Li7P3S11 electrolytes uniformly coat on the surface of Cu2SnS3@graphene composite forming nanoscaled electron/ion transportation networks. The large amount of nanoscaled triple‐phase boundary in cathode ensures high power density due to high ionic/electronic conductions and long cycle life due to uniform and reduced volume change of nano‐Cu2SnS3. The Cu2SnS3@graphene‐Li7P3S11 cathode layer with 2.0 mg cm?2 loading in all‐solid‐state lithium batteries demonstrates a high reversible discharge specific capacity of 813.2 mAh g?1 at 100 mA g?1 and retains 732.0 mAh g?1 after 60 cycles, corresponding to a high energy density of 410.4 Wh kg?1 based on the total mass of Cu2SnS3@graphene‐Li7P3S11 composite based cathode. Moreover, it exhibits excellent rate capability and high‐rate cycling stability, showing reversible capacity of 363.5 mAh g?1 at 500 mA g?1 after 200 cycles. The study provides a new insight into constructing both electronic and ionic conduction networks for all‐solid‐state lithium batteries.  相似文献   

13.
Aqueous Zn‐ion batteries (ZIBs) have garnered the researchers' spotlight owing to its high safety, cost effectiveness, and high theoretical capacity of Zn anode. However, the availability of cathode materials for Zn ions storage is limited. With unique layered structure along the [010] direction, α‐MoO3 holds great promise as a cathode material for ZIBs, but its intrinsically poor conductivity severely restricts the capacity and rate capability. To circumvent this issue, an efficient surface engineering strategy is proposed to significantly improve the electric conductivity, Zn ion diffusion rate, and cycling stability of the MoO3 cathode for ZIBs, thus drastically promoting its electrochemical properties. With the synergetic effect of Al2O3 coating and phosphating process, the constructed Zn//P‐MoO3?x@Al2O3 battery delivers impressive capacity of 257.7 mAh g?1 at 1 A g?1 and superior rate capability (57% capacity retention at 20 A g?1), dramatically surpassing the pristine Zn//MoO3 battery (115.8 mAh g?1; 19.7%). More importantly, capitalized on polyvinyl alcohol gel electrolyte, an admirable capacity (19.2 mAh cm?3) as well as favorable energy density (14.4 mWh cm?3; 240 Wh kg?1) are both achieved by the fiber‐shaped quasi‐solid‐state ZIB. This work may be a great motivation for further research on molybdenum or other layered structure materials for high‐performance ZIBs.  相似文献   

14.
As an essential member of 2D materials, MXene (e.g., Ti3C2Tx) is highly preferred for energy storage owing to a high surface‐to‐volume ratio, shortened ion diffusion pathway, superior electronic conductivity, and neglectable volume change, which are beneficial for electrochemical kinetics. However, the low theoretical capacitance and restacking issues of MXene severely limit its practical application in lithium‐ion batteries (LIBs). Herein, a facile and controllable method is developed to engineer 2D nanosheets of negatively charged MXene and positively charged layered double hydroxides derived from ZIF‐67 polyhedrons into 3D hollow frameworks via electrostatic self‐assembling. After thermal annealing, transition metal oxides (TMOs)@MXene (CoO/Co2Mo3O8@MXene) hollow frameworks are obtained and used as anode materials for LIBs. CoO/Co2Mo3O8 nanosheets prevent MXene from aggregation and contribute remarkable lithium storage capacity, while MXene nanosheets provide a 3D conductive network and mechanical robustness to facilitate rapid charge transfer at the interface, and accommodate the volume expansion of the internal CoO/Co2Mo3O8. Such hollow frameworks present a high reversible capacity of 947.4 mAh g?1 at 0.1 A g?1, an impressive rate behavior with 435.8 mAh g?1 retained at 5 A g?1, and good stability over 1200 cycles (545 mAh g?1 at 2 A g?1).  相似文献   

15.
Covalent organic frameworks (COFs) are an emerging class of porous crystalline materials constructed from designer molecular building blocks that are linked and extended periodically via covalent bonds. Their high stability, open channels, and ease of functionalization suggest that they can function as a useful cathode material in reversible lithium batteries. Here, a COF constructed from hydrazone/hydrazide‐containing molecular units, which shows good CO2 sequestration properties, is reported. The COF is hybridized to Ru‐nanoparticle‐coated carbon nanotubes, and the composite is found to function as highly efficient cathode in a Li–CO2 battery. The robust 1D channels in the COF serve as CO2 and lithium‐ion‐diffusion channels and improve the kinetics of electrochemical reactions. The COF‐based Li–CO2 battery exhibits an ultrahigh capacity of 27 348 mAh g?1 at a current density of 200 mA g?1, and a low cut‐off overpotential of 1.24 V within a limiting capacity of 1000 mAh g?1. The rate performance of the battery is improved considerably with the use of the COF at the cathode, where the battery shows a slow decay of discharge voltage from a current density of 0.1 to 4 A g?1. The COF‐based battery runs for 200 cycles when discharged/charged at a high current density of 1 A g?1.  相似文献   

16.
High‐rate performance flexible lithium‐ion batteries are desirable for the realization of wearable electronics. The flexibility of the electrode in the battery is a key requirement for this technology. In the present work, spinel lithium titanate (Li4Ti5O12, LTO) cuboid arrays are grown on flexible carbon fiber cloth (CFC) to fabricate a binder‐free composite electrode (LTO@CFC) for flexible lithium‐ion batteries. Experimental results show that the LTO@CFC electrode exhibits a remarkably high‐rate performance with a capacity of 105.8 mAh g?1 at 50C and an excellent electrochemical stability against cycling (only 2.2% capacity loss after 1000 cycles at 10C). A flexible full cell fabricated with the LTO@CFC as the anode and LiNi0.5Mn1.5O4 coated on Al foil as the cathode displays a reversible capacity of 109.1 mAh g?1 at 10C, an excellent stability against cycling and a great mechanical stability against bending. The observed high‐rate performance of the LTO@CFC electrode is due to its unique corn‐like architecture with LTO cuboid arrays (corn kernels) grown on CFC (corn cob). This work presents a new approach to preparing LTO‐based composite electrodes with an architecture favorable for ion and electron transport for flexible energy storage devices.  相似文献   

17.
18.
Lithium–sulfur batteries, as one of promising next‐generation energy storage devices, hold great potential to meet the demands of electric vehicles and grids due to their high specific energy. However, the sluggish kinetics and the inevitable “shuttle effect” severely limit the practical application of this technology. Recently, design of composite cathode with effective catalysts has been reported as an essential way to overcome these issues. In this work, oxygen‐deficient ferric oxide (Fe2O3?x), prepared by lithiothermic reduction, is used as a low‐cost and effective cathodic catalyst. By introducing a small amount of Fe2O3?x into the cathode, the battery can deliver a high capacity of 512 mAh g?1 over 500 cycles at 4 C, with a capacity fade rate of 0.049% per cycle. In addition, a self‐supporting porous S@KB/Fe2O3?x cathode with a high sulfur loading of 12.73 mg cm?2 is prepared by freeze‐drying, which can achieve a high areal capacity of 12.24 mAh cm?2 at 0.05 C. Both the calculative and experimental results demonstrate that the Fe2O3?x has a strong adsorption toward soluble polysulfides and can accelerate their subsequent conversion to insoluble products. As a result, this work provides a low‐cost and effective catalyst candidate for the practical application of lithium–sulfur batteries.  相似文献   

19.
Metal–organic frameworks (MOFs) featuring versatile topological architectures are considered to be efficient self‐sacrificial templates to achieve mesoporous nanostructured materials. A facile and cost‐efficient strategy is developed to scalably fabricate binary metal oxides with complex hollow interior structures and tunable compositions. Bimetal–organic frameworks of Ni‐Co‐BTC solid microspheres with diverse Ni/Co ratios are readily prepared by solvothermal method to induce the Ni x Co3? x O4 multishelled hollow microspheres through a morphology‐inherited annealing treatment. The obtained mixed metal oxides are demonstrated to be composed of nanometer‐sized subunits in the shells and large void spaces left between adjacent shells. When evaluated as anode materials for lithium‐ion batteries, Ni x Co3? x O4‐0.1 multishelled hollow microspheres deliver a high reversible capacity of 1109.8 mAh g?1 after 100 cycles at a current density of 100 mA g?1 with an excellent high‐rate capability. Appropriate capacities of 832 and 673 mAh g?1 could also be retained after 300 cycles at large currents of 1 and 2 A g?1, respectively. These prominent electrochemical properties raise a concept of synthesizing MOFs‐derived mixed metal oxides with multishelled hollow structures for progressive lithium‐ion batteries.  相似文献   

20.
Silicon holds great promise as an anode material for lithium‐ion batteries with higher energy density; its implication, however, is limited by rapid capacity fading. A catalytic growth of graphene cages on composite particles of magnesium oxide and silicon, which are made by magnesiothermic reduction reaction of silica particles, is reported herein. Catalyzed by the magnesium oxide, graphene cages can be conformally grown onto the composite particles, leading to the formation of hollow graphene‐encapsulated Si particles. Such materials exhibit excellent lithium storage properties in terms of high specific capacity, remarkable rate capability (890 mAh g?1 at 5 A g?1), and good cycling retention over 200 cycles with consistently high coulombic efficiency at a current density of 1 A g?1. A full battery test using LiCoO2 as the cathode demonstrates a high energy density of 329 Wh kg?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号