首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterning of high‐mobility 2D semiconducting materials with unique layered structures and superb electronic properties offers great potential for batch fabrication and integration of next‐generation electronic and optoelectronic devices. Here, a facile approach is used to achieve accurate patterning of 2D high‐mobility semiconducting Bi2O2Se crystals using dilute H2O2 and protonic mixture acid as efficient etchants. The 2D Bi2O2Se crystal after chemical etching maintains a high Hall mobility of over 200 cm2 V?1 s?1 at room temperature. Centimeter‐scale well‐ordered arrays of 2D Bi2O2Se with tailorable configurations are readily obtained. Furthermore, integrated photodetectors based on 2D Bi2O2Se arrays are fabricated, exhibiting excellent air stability and high photoresponsivity of ≈2000 A W?1 at 532 nm. These results are one step towards the practical application of ultrathin 2D integrated digital and optoelectronic circuits.  相似文献   

2.
Molybdenum disulfide (MoS2) and bismuth telluride (Bi2Te3) are the two most common types of structures adopted by 2D chalcogenides. In view of their unique physical properties and structure, 2D chalcogenides have potential applications in various fields. However, the excellent properties of these 2D crystals depend critically on their crystal structures, where defects, cracks, holes, or even greater damage can be inevitably introduced during the preparation and transferring processes. Such defects adversely impact the performance of devices made from 2D chalcogenides and, hence, it is important to develop ways to intuitively and precisely repair these 2D crystals on the atomic scale, so as to realize high‐reliability devices from these structures. Here, an in situ study of the repair of the nanopores in MoS2 and Bi2Te3 is carried out under electron beam irradiation by transmission electron microscopy. The experimental conditions allow visualization of the structural dynamics of MoS2 and Bi2Te3 crystals with unprecedented resolution. Real‐time observation of the healing of defects at atomic resolution can potentially help to reproducibly fabricate and simultaneously image single‐crystalline free‐standing 2D chalcogenides. Thus, these findings demonstrate the viability of using an electron beam as an effective tool to precisely engineer materials to suit desired applications in the future.  相似文献   

3.
Bi2(Te, Se)3 and Bi2Se1.2Te1.8 bulk products were synthesised using standard solid-state microwave synthesis. The Bi2(Te, Se)3 and Bi2Se1.2Te1.8 were then deposited thermally onto glass substrates at a pressure of 10? 6 Torr. The structure of the samples was analysed using X-ray diffraction (XRD), and the powders and thin films were observed to be polycrystalline and rhombohedral in structure. The surface morphology of the samples was determined using scanning electron microscopy (SEM). From the measurements of optical properties, the energy gap values for the Bi2Te3, Bi2Se3, and Bi2Se1.2Te1.8 thin films were 0.43, 0.73, and 0.65 eV, respectively.  相似文献   

4.
Emerging novel applications at the forefront of innovation horizon raise new requirements including good flexibility and unprecedented properties for the photoelectronic industry. On account of diversity in transport and photoelectric properties, 2D layered materials have proven as competent building blocks toward next‐generation photodetectors. Herein, an all‐2D Bi2Te3‐SnS‐Bi2Te3 photodetector is fabricated with pulsed‐laser deposition. It is sensitive to broadband wavelength from ultraviolet (370 nm) to near‐infrared (808 nm). In addition, it exhibits great durability to bend, with intact photoresponse after 100 bend cycles. Upon 370 nm illumination, it achieves a high responsivity of 115 A W?1, a large external quantum efficiency of 3.9 × 104%, and a superior detectivity of 4.1 × 1011 Jones. They are among the best figures‐of‐merit of state‐of‐the‐art 2D photodetectors. The synergistic effect of SnS's strong light–matter interaction, efficient carrier separation of Bi2Te3–SnS interface, expedite carrier injection across Bi2Te3–SnS interface, and excellent carrier collection of Bi2Te3 topological insulator electrodes accounts for the superior photodetection properties. In summary, this work depicts a facile all‐in‐one fabrication strategy toward a Bi2Te3‐SnS‐Bi2Te3 photodetector. More importantly, it reveals a novel all‐2D concept for construction of flexible, broadband, and high‐performance photoelectronic devices by integrating 2D layered metallic electrodes and 2D layered semiconducting channels.  相似文献   

5.
Atomically thin oxychalcogenides have been attracting intensive attention for their fascinating fundamental properties and application prospects. Bi2O2Se, a representative of layered oxychalcogenides, has emerged as an air‐stable high‐mobility 2D semiconductor that holds great promise for next‐generation electronics. The preparation and device fabrication of high‐quality Bi2O2Se crystals down to a few atomic layers remains a great challenge at present. Here, molecular beam epitaxy (MBE) of atomically thin Bi2O2Se films down to monolayer on SrTiO3 (001) substrate is achieved by co‐evaporating Bi and Se precursors in oxygen atmosphere. The interfacial atomic arrangements of MBE‐grown Bi2O2Se/SrTiO3 are unambiguously revealed, showing an atomically sharp interface and atom‐to‐atom alignment. Importantly, the electronic band structures of one‐unit‐cell (1‐UC) thick Bi2O2Se films are observed by angle‐resolved photoemission spectroscopy (ARPES), showing low effective mass of ≈0.15 m0 and bandgap of ≈0.8 eV. These results may be constructive to the synthesis of other 2D oxychalcogenides and investigation of novel physical properties.  相似文献   

6.
Three-dimensional topological insulators (3D TI) exhibit conventional parabolic bulk bands and protected Dirac surface states. A thorough investigation of the different transport channels provided by the bulk and surface carriers using macroscopic samples may provide a path toward accessing superior surface transport properties. Bi2Te3 materials make promising 3D TI models; however, due to their complicated defect chemistry, these materials have a high number of charge carriers in the bulk that dominate the transport, even as nanograined structures. To partially control the bulk charge carrier density, herein the synthesis of Te-enriched Bi2Te3 nanoparticles is reported. The resulting nanoparticles are compacted into nanograined pellets of varying porosity to tailor the surface-to-volume ratio, thereby emphasizing the surface transport channels. The nanograined pellets are characterized by a combination of resistivity, Hall- and magneto-conductance measurements together with (THz) time-domain reflectivity measurements. Using the Hikami-Larkin-Nagaoka (HLN) model, a characteristic coherence length of ≈200 nm is reported that is considerably larger than the diameter of the nanograins. The different contributions from the bulk and surface carriers are disentangled by THz spectroscopy, thus emphasizing the dominant role of the surface carriers. The results strongly suggest that the surface transport carriers have overcome the hindrance imposed by nanoparticle boundaries.  相似文献   

7.
As new 2D layered nanomaterials, Bi2O2Se nanoplates have unique semiconducting properties that can benefit biomedical applications. Herein, a facile top‐down approach for the synthesis of Bi2O2Se quantum dots (QDs) in a solution is described. The Bi2O2Se QDs with a size of 3.8 nm and thickness of 1.9 nm exhibit a high photothermal conversion coefficient of 35.7% and good photothermal stability. In vitro and in vivo assessments demonstrate that the Bi2O2Se QDs possess excellent photoacoustic (PA) performance and photothermal therapy (PTT) efficiency. After systemic administration, the Bi2O2Se QDs accumulate passively in tumors enabling efficient PA imaging of the entire tumors to facilitate imaging‐guided PTT without obvious toxicity. Furthermore, the Bi2O2Se QDs which exhibit degradability in aqueous media not only have sufficient stability during in vivo circulation to perform the designed therapeutic functions, but also can be discharged harmlessly from the body afterward. The results reveal the great potential of Bi2O2Se QDs as a biodegradable multifunctional agent in medical applications.  相似文献   

8.
We have optimized the compositions of thermoelectric materials based on Sb2Te3-Bi2Te3 solid solutions using Czochralski-grown single crystals. The thermoelectric performance of Sb2Te3-Bi2Te3 solid solutions containing 0–100 mol % Bi2Te3 and Bi2Te3-Sb2Te3-Bi2-Bi2Se3 solid solutions containing 2, 4, or 7 mol % Bi2Se3 has been investigated. The Bi2Se3-doped crystals are found to have higher thermoelectric figures of merit compared to the undoped crystals. The optimal crystal compositions are selected for different temperatures in the range 100–400 K.  相似文献   

9.
The transport properties of Bi2 – y Sn y Te3 – x Se x solid solutions are studied. The results demonstrate that doping with Sn has a strong effect on the temperature dependences of the thermoelectric power and electrical conductivity of the crystals. This suggests that the valence band of the crystals contains Sn-related resonance states. The point defects and dislocation system in Bi2Te3 and Bi2 – y Sn y Te3 – x Se x solid solutions are studied by transmission electron microscopy. It is shown that the predominant defects in the crystals studied, grown by the Czochralski technique, are dislocations lying in the (0001) plane. The estimated dislocation density is 108 to 109 cm–2, and the primary slip plane is (0001). Electron-microscopic examination indicates the presence of stacking faults and very small dislocation loops in both Bi2Te3 and Bi2 – y Sn y Te3 – x Se x single crystals. Since all of the crystals are highly degenerate semiconductors, it is reasonable to assume that structural defects have an insignificant effect on their electrical properties.  相似文献   

10.
Abstract

Vertical Bridgman systems with programmable temperature control are used to grow (SbxBi1:x)2Te3 crystals. High purity Bi, Sb and Te are used as sources and the diameter of 1.1 cm, little soft bulk crystals of (SbxBi1–x)2 Te3 can be obtained. Scanning electron microscope (SEM) and electron probe microanalysis (EPMA) are used to analyze the micro‐structure and the compositions of the crystal. From the X‐ray diffraction patterns it appears that the grown crystal is single crystal or directive polycrystal. If the uniformity of the source solution and grown temperature are under control, then the high quality of single crystals can be obtained. The dependence of crystal structure and the thermoelectric characteristics on the changed compositions of grown crystals are discussed. The optimum composition for the thermoelectric properties is Sb1.00 Bi1.04Te2.96. When the DC current, 3A, is applied to the Sb1.00 Bi1.04 Te2.96 crystal with suitable electrodes, the temperature difference (△T) between two sides of the crystal can be as high as 60°C. It is 2 times larger than that ever obtained by Sb2Te3 crystal. It appeared that the grown (SbxBi1‐x)2Te3 crystals have the potential on the fabrication of thermoelectric devices and electronic cooling system.  相似文献   

11.
Using differential thermal analysis and x-ray diffraction, we have shown that the Bi2Te3-Bi2Se3 system contains a continuous series of solid solutions in a narrow temperature range and a compound of composition Bi2Te2Se below the solidus line. The liquidus and solidus lines determined using zone-melted samples differ little from those reported in the literature for equilibrium samples. The Bi2Te3?x Se x solid-solution phase extends to ~-14 mol % Bi2Se3 (Bi2Te2.58Se0.42). The thermoelectric power of the alloys drops sharply near the boundary of the two-phase region. Within the homogeneity range of Bi2Te2Se (33.3 mol % Bi2Se3), the thermoelectric power factor has a minimum, while the thermoelectric power has a small maximum.  相似文献   

12.
Bi2O2Se is the most promising 2D material due to its semiconducting feature and high mobility, making it propitious channel material for high-performance electronics that demands highly crystalline Bi2O2Se at low-growth temperature. Here, a low-temperature salt-assisted chemical vapor deposition approach for growing single-domain Bi2O2Se on a millimeter scale with thicknesses of multilayer to monolayer is presented. Because of the advantage of thickness-dependent growth, systematical scrutiny of layer-dependent Raman spectroscopy of Bi2O2Se from monolayer to bulk is investigated, revealing a redshift of the A1g mode at 162.4 cm−1. Moreover, the long-term environmental stability of ≈2.4 nm thick Bi2O2Se is confirmed after exposing the sample for 1.5 years to air. The backgated field effect transistor (FET) based on a few-layered Bi2O2Se flake represents decent carrier mobility (≈287 cm2 V−1s−1) and an ON/OFF ratio of up to 107. This report indicates a technique to grow large-domain thickness controlled Bi2O2Se single crystals for electronics.  相似文献   

13.
The effect of doping with Sn on the properties of Czochralski-grown Bi2Te3 crystals was studied. The effective segregation coefficient for Sn was determined to be 0.6. The thermoelectric power, electrical conductivity, and Hall coefficient of the doped crystals were measured at room temperature. Doping with low Sn concentrations (0.2-0.5 at. %) was found to have only a weak effect on the electrical properties ofp- type Bi2Te3. Doping with 0.7-1 at. % Sn reduces the thermoelectric power and increases the electrical conductivity and hole concentration. Lattice thermal conductivity is a nonmonotonic function of Sn concentration. The thermoelectric figure of merit of Bi2Te3 doped with less than 0.6 at. % Sn exceeds that of undoped Bi2Te3.  相似文献   

14.
A number of sesqui‐chalcogenides show remarkable properties, which make them attractive for applications as thermoelectrics, topological insulators, and phase‐change materials. To see if these properties can be related to a special bonding mechanism, seven sesqui‐chalcogenides (Bi2Te3, Bi2Se3, Bi2S3, Sb2Te3, Sb2Se3, Sb2S3, and β‐As2Te3) and GaSe are investigated. Atom probe tomography studies reveal that four of the seven sesqui‐chalcogenides (Bi2Te3, Bi2Se3, Sb2Te3, and β‐As2Te3) show an unconventional bond‐breaking mechanism. The same four compounds evidence a remarkable property portfolio in density functional theory calculations including large Born effective charges, high optical dielectric constants, low Debye temperatures and an almost metal‐like electrical conductivity. These results are indicative for unconventional bonding leading to physical properties distinctively different from those caused by covalent, metallic, or ionic bonding. The experiments reveal that this bonding mechanism prevails in four sesqui‐chalcogenides, characterized by rather short interlayer distances at the van der Waals like gaps, suggestive of significant interlayer coupling. These conclusions are further supported by a subsequent quantum‐chemistry‐based bonding analysis employing charge partitioning, which reveals that the four sesqui‐chalcogenides with unconventional properties are characterized by modest levels of charge transfer and sharing of about one electron between adjacent atoms. Finally, the 3D maps for different properties reveal discernible property trends and enable material design.  相似文献   

15.
The effect of Sn doping (0.2 and 0.4 at %) on the properties of Czochralski-grown single crystals of n-type Bi2Te2.85Se0.15 solid solutions is studied. Thermoelectric power, electrical conductivity, thermal conductivity, and Hall effect measurements in the range 77–400 K demonstrate that Sn doping has a significant effect on the transport properties of the solid solutions. Between 300 and 370 K, the thermoelectric figure of merit of Bi1.996Sn0.004Te2.85Se0.15 single crystals is higher than that of the Sn-free solid solution. In addition, hot-microprobe thermoelectric power measurements, highly sensitive to variations in carrier concentration, indicate that the Sn-doped single crystals are very uniform in electrical properties, both along the growth direction and radially.  相似文献   

16.
This paper examines the formation of arrays of interlayer nanostructures in layered crystals grown by directional solidification and the Bridgman method. Sb2Te3 and Bi2Te3 layers are shown to contain steplayered structures with nanostructured islands on them. Atomic force microscope images of interlayer nanostructures in such crystals are analyzed in terms of the physics of fractals and self-organization processes.  相似文献   

17.
2D materials are considered as intriguing building blocks for next‐generation optoelectronic devices. However, their photoresponse performance still needs to be improved for practical applications. Here, ultrasensitive 2D phototransistors are reported employing chemical vapor deposition (CVD)‐grown 2D Bi2O2Se transferred onto silicon substrates with a noncorrosive transfer method. The as‐transferred Bi2O2Se preserves high quality in contrast to the serious quality degradation in hydrofluoric‐acid‐assisted transfer. The phototransistors show a responsivity of 3.5 × 104 A W?1, a photoconductive gain of more than 104, and a time response in the order of sub‐millisecond. With back gating of the silicon substrate, the dark current can be reduced to several pA. This yields an ultrahigh sensitivity with a specific detectivity of 9.0 × 1013 Jones, which is one of the highest values among 2D material photodetectors and two orders of magnitude higher than that of other CVD‐grown 2D materials. The high performance of the phototransistor shown here together with the developed unique transfer technique are promising for the development of novel 2D‐material‐based optoelectronic applications as well as integrating with state‐of‐the‐art silicon photonic and electronic technologies.  相似文献   

18.
The six independent elastic constants of the monocrystalline, pseudo-binary alloy Bi1·60Sb0·40Te3 have been measured by the ultrasonic pulse-echo technique. The elastic behaviour is compared and contrasted with those of Bi2Te3 and the group V semimetals with crystal structures belonging to the same point group, ¯3m. Elastic wave-velocity surface cross-sections, particle displacement and energy flux vectors are presented and discussed; the pure mode axes — knowledge of which is most useful in experimental ultrasonic studies — are given. Elastic wave propagation in Bi1.60Sb0.40Te3 and Bi2Te3 shows characteristics expected for layer-type crystals with weak interlayer binding, i.e., comparatively large ultrasonic velocities in thexy plane and lower velocities along the direction (z) of weakest binding.  相似文献   

19.
Single-phase Bi0.5Sb1.5Te3 compounds have been prepared by hydrothermal synthesis at 150 °C for 24 h using SbCl3, BiCl3 and tellurium powder as precursors. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) have been applied to analyze the phase distributions, microstructures and grain sizes of the as-grown Bi0.5Sb1.5Te3 products. It is found that the hydrothermally synthesized Bi0.5Sb1.5Te3 nanopowders have a morphology dominated by irregular hexagonal sheets due to the anisotropic growth of the crystals. The Bi0.5Sb1.5Te3 nanosheets are parallelly stacked in certain direction to form sheet-agglomerates attribute to the temperature gradients in the solution.  相似文献   

20.
We have found a new type of three-dimensional quantized Hall effect (QHE) in layered semiconductors Bi2–xSnxTe3 (x0.0125) single crystals. The Hall resistivity is not expressed in a universal relation applicable for a conventional QHE and depends appreciably on the doped Sn concentration x. The flat Hall plateaus are visible at higher Landau levels but are rather suppressed at lower regions. The calculated Landau levels of the upper valence band (UVB) with the best-fit band parameters are in excellent agreement with the experiments, including spin splitting. For Bi2–xSnxTe3, the Sn-originated impurity band (IB) has resonant nature and enhances the density of states at the Fermi level of UVB. The charge transfer occurs between the quantized UVB and the resonant IB or the lower valence band (LVB) for Bi2–xSnxTe3 or Bi2Te3, respectively, and the Landau levels are enhanced appreciably. We have revealed that the quasi-localized states are formed in quantized three-dimensional density of state spectra. We have proposed a possible model for the present QHE, which is a modification of Mani's model, where the quasi-localized state is formed at the disorder-originated tail of each Landau level. In the quasi-localized regime, the IB or LVB are responsible for the carrier reservoir to regulate the Hall resistivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号