首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The therapeutic efficiency of allogenic/intrinsic neural stem cells (NSCs) after spinal cord injury is severely compromised because the hostile niche at the lesion site incurs massive astroglial but not neuronal differentiation of NSCs. Although many attempts are made to reconstruct a permissive niche for nerve regeneration, solely using a living cell material to build an all‐in‐one, multifunctional, permissive niche for promoting neuronal while inhibiting astroglial differentiation of NSCs is not reported. Here, ectomesenchymal stem cells (EMSCs) are reported to serve as a living, smart material that creates a permissive, all‐in‐one niche which provides neurotrophic factors, extracellular matrix molecules, cell–cell contact, and favorable substrate stiffness for directing NSC differentiation. Interestingly, in this all‐in‐one niche, a corresponding all‐in‐one signal‐sensing platform is assembled through recruiting various niche signaling molecules into lipid rafts for promoting neuronal differentiation of NSCs, and meanwhile, inhibiting astrocyte overproliferation through the connexin43/YAP/14‐3‐3θ pathway. In vivo studies confirm that EMSCs can promote intrinsic NSC neuronal differentiation and domesticating astrocyte behaviors for nerve regeneration. Collectively, this study represents an all‐in‐one niche created by a single‐cell material—EMSCs for directing NSC differentiation.  相似文献   

2.
3.
Stem cells have attracted increasing research interest in the field of regenerative medicine because of their unique ability to differentiate into multiple cell lineages. However, controlling stem cell differentiation efficiently and improving the current destructive characterization methods for monitoring stem cell differentiation are the critical issues. To this end, multifunctional graphene–gold (Au) hybrid nanoelectrode arrays (NEAs) to: (i) investigate the effects of combinatorial physicochemical cues on stem cell differentiation, (ii) enhance stem cell differentiation efficiency through biophysical cues, and (iii) characterize stem cell differentiation in a nondestructive real‐time manner are developed. Through the synergistic effects of physiochemical properties of graphene and biophysical cues from nanoarrays, the graphene‐Au hybrid NEAs facilitate highly enhanced cell adhesion and spreading behaviors. In addition, by varying the dimensions of the graphene‐Au hybrid NEAs, improved stem cell differentiation efficiency, resulting from the increased focal adhesion signal, is shown. Furthermore, graphene‐Au hybrid NEAs are utilized to monitor osteogenic differentiation of stem cells electrochemically in a nondestructive real‐time manner. Collectively, it is believed the unique multifunctional graphene‐Au hybrid NEAs can significantly advance stem‐cell‐based biomedical applications.  相似文献   

4.
One of the main challenges in tissue engineering (TE) is to obtain optimized products, combining biomaterials, cells and soluble factors able to stimulate tissue regeneration. Multiple combinations may be considered by changing the conditions among these three factors. The unpredictable response of each combination requires time‐consuming tests. High‐throughput methodologies have been proposed to master such complex analyses in TE. Usually, these tests are performed using cells cultured into 2D biomaterials or by dispensing arrays of cell‐loaded hydrogels. For the first time an on‐chip combinatorial study of 3D miniaturized porous scaffolds is proposed, using a patterned bioinspired superhydrophobic platform. Arrays of biomaterials are dispensed and processed in situ as porous scaffolds with distinct composition, surface characteristics, porosity/pore size, and mechanical properties. On‐chip porosity, pore size, and mechanical properties of scaffolds based on chitosan and alginate are assessed by adapting microcomputed tomography equipment and a dynamic mechanical analyzer, as well as cell response after 24 hours. The interactions between cell types of two distinct origins—osteoblast‐like and fibroblasts—and the scaffolds modified with fibronectin are studied and validated by comparison with conventional destructive methods (dsDNA quantification and MTS tests). Physical and biological on‐chip analyses are coherent with the conventional measures, and conclusions about the most favorable conditions for each cell type are taken.  相似文献   

5.
Cell fate is regulated by extracellular environmental signals. Receptor specific interaction of the cell with proteins, glycans, soluble factors as well as neighboring cells can steer cells towards proliferation, differentiation, apoptosis or migration. In this review, approaches to build cellular structures by engineering aspects of the extracellular environment are described. These methods include non‐specific modifications to control the wettability and stiffness of surfaces using self‐assembled monolayers (SAMs) and polyelectrolyte multilayers (PEMs) as well as methods where the temporal activation and spatial distribution of adhesion ligands is controlled. Building on these techniques, construction of two‐dimensional cell sheets using temperature sensitive polymers or electrochemical dissolution is described together with current applications of these grafts in the clinical arena. Finally, methods to pattern cells in three‐dimensions as well as to functionalize the 3D environment with biologic motifs take us one step closer to being able to engineer multicellular tissues and organs.  相似文献   

6.
Human hematopoietic niches are complex specialized microenvironments that maintain and regulate hematopoietic stem and progenitor cells (HSPC). Thus far, most of the studies performed investigating alterations of HSPC‐niche dynamic interactions are conducted in animal models. Herein, organ microengineering with microfluidics is combined to develop a human bone marrow (BM)‐on‐a‐chip with an integrated recirculating perfusion system that consolidates a variety of important parameters such as 3D architecture, cell–cell/cell–matrix interactions, and circulation, allowing a better mimicry of in vivo conditions. The complex BM environment is deconvoluted to 4 major distinct, but integrated, tissue‐engineered 3D niche constructs housed within a single, closed, recirculating microfluidic device system, and equipped with cell tracking technology. It is shown that this technology successfully enables the identification and quantification of preferential interactions—homing and retention—of circulating normal and malignant HSPC with distinct niches.  相似文献   

7.
Tissue‐engineered hydrogels have received extensive attention as their mechanical properties, chemical compositions, and biological signals can be dynamically modified for mimicking extracellular matrices (ECM). Herein, the synthesis of novel double network (DN) hydrogels with tunable mechanical properties using combinatorial screening methods is reported. Furthermore, nanoengineered (NE) hydrogels are constructed by addition of ultrathin 2D black phosphorus (BP) nanosheets to the DN hydrogels with multiple functions for mimicking the ECM microenvironment to induce tissue regeneration. Notably, it is found that the BP nanosheets exhibit intrinsic properties for induced CaP crystal particle formation and therefore improve the mineralization ability of NE hydrogels. Finally, in vitro and in vivo data demonstrate that the BP nanosheets, mineralized CaP crystal nanoparticles, and excellent mechanical properties provide a favorable ECM microenvironment to mediate greater osteogenic cell differentiation and bone regeneration. Consequently, the combination of bioactive chemical materials and excellent mechanical stimuli of NE hydrogels inspire novel engineering strategies for bone‐tissue regeneration.  相似文献   

8.
This paper investigates the way that firms' environmental context and organizational structure influence their strategic choices and lead to different capabilities configurations. Drawing on contingency theory and the resource‐based view, we explore integrated solutions—an emerging business model in which firms bundle products and services—in the IT sector, which is a particularly appropriate context due to its novelty, high‐technology characteristics and implications for capabilities development. This study contributes to research and practice by identifying how organizational and environmental/market factors co‐evolve with firms' strategy and how firms' distinct strategic decisions lead to differences in capabilities configurations.  相似文献   

9.
The scaffold‐free cell‐sheet technique plays a significant role in stem‐cell‐based regeneration. Furthermore, growth factors are known to direct stem cell differentiation and enhance tissue regeneration. However, the absence of an effective means to incorporate growth factors into the cell sheets hinders further optimization of the regeneration efficiency. Here, a novel design of magnetically controlled “growth‐factor‐immobilized cell sheets” is reported. A new Fe3O4 magnetic nanoparticle (MNP) coated with nanoscale graphene oxide (nGO@Fe3O4) is developed to label stem cells and deliver growth factors. First, the nGO@Fe3O4 MNPs can be easily swallowed by dental‐pulp stem cells (DPSCs) and have no influence on cell viability. Thus, the MNP‐labeled cells can be organized via magnetic force to form multilayered cell sheets in different patterns. Second, compared to traditional Fe3O4 nanoparticles, the graphene oxide coating provides plenty of carboxyl groups to bind and deliver growth factors. Therefore, with these nGO@Fe3O4 MNPs, bone‐morphogenetic‐protein‐2 (BMP2) is successfully incorporated into the DPSCs sheets to induce more bone formation. Furthermore, an integrated osteochondral complex is also constructed using a combination of DPSCs/TGFβ3 and DPSCs/BMP2. All these results demonstrate that the new cell‐sheet tissue‐engineering approach exhibits promising potential for future use in regenerative medicine.  相似文献   

10.
Evaluation of kinetic distribution and behaviors of nanoparticles in vivo provides crucial clues into their roles in living organisms. Extracellular vesicles are evolutionary conserved nanoparticles, known to play important biological functions in intercellular, inter‐species, and inter‐kingdom communication. In this study, the first kinetic analysis of the biodistribution of outer membrane vesicles (OMVs)—bacterial extracellular vesicles—with immune‐modulatory functions is performed. OMVs, injected intraperitoneally, spread to the whole mouse body and accumulate in the liver, lung, spleen, and kidney within 3 h of administration. As an early systemic inflammation response, increased levels of TNF‐α and IL‐6 are observed in serum and bronchoalveolar lavage fluid. In addition, the number of leukocytes and platelets in the blood is decreased. OMVs and cytokine concentrations, as well as body temperature are gradually decreased 6 h after OMV injection, in concomitance with the formation of eye exudates, and of an increase in ICAM‐1 levels in the lung. Following OMV elimination, most of the inflammatory signs are reverted, 12 h post‐injection. However, leukocytes in bronchoalveolar lavage fluid are increased as a late reaction. Taken together, these results suggest that OMVs are effective mediators of long distance communication in vivo.  相似文献   

11.
The development of extracellular matrix mimetics that imitate niche stem cell microenvironments and support cell growth for technological applications is intensely pursued. Specifically, mimetics are sought that can enact control over the self‐renewal and directed differentiation of human pluripotent stem cells (hPSCs) for clinical use. Despite considerable progress in the field, a major impediment to the clinical translation of hPSCs is the difficulty and high cost of large‐scale cell production under xeno‐free culture conditions using current matrices. Here, a bioactive, recombinant, protein‐based polymer, termed ZTFn, is presented that closely mimics human plasma fibronectin and serves as an economical, xeno‐free, biodegradable, and functionally adaptable cell substrate. The ZTFn substrate supports with high performance the propagation and long‐term self‐renewal of human embryonic stem cells while preserving their pluripotency. The ZTFn polymer can, therefore, be proposed as an efficient and affordable replacement for fibronectin in clinical grade cell culturing. Further, it can be postulated that the ZT polymer has significant engineering potential for further orthogonal functionalization in complex cell applications.  相似文献   

12.
Insights into the complex stem cell niche have identified the cell–material interface to be a potent regulator of stem cell fate via material properties such as chemistry, topography and stiffness. In light of this, materials scientists have the opportunity to develop bioactive materials for stem cell culture that elicit specific cellular responses. To accelerate materials discovery, high throughput screening platforms have been designed which can rapidly evaluate combinatorial material libraries in two and three-dimensional environments. In this review, we present screening platforms for the discovery of material properties that influence stem cell behavior.  相似文献   

13.
Cells, sophisticated membrane‐bound units that contain the fundamental molecules of life, provide a precious library for inspiration and motivation for both society and academia. Scientists from various disciplines have made great endeavors toward the understanding of the cellular evolution by engineering artificial counterparts (protocells) that mimic or initiate structural or functional cellular aspects. In this regard, several works have discussed possible building blocks, designs, functions, or dynamics that can be applied to achieve this goal. Although great progress has been made, fundamental—yet complex—behaviors such as cellular communication, responsiveness to environmental cues, and motility remain a challenge, yet to be resolved. Herein, recent efforts toward utilizing soft systems for cellular mimicry are summarized—following the main outline of cellular evolution, from basic compartmentalization, and biological reactions for energy production, to motility and communicative behaviors between artificial cell communities or between artificial and natural cell communities. Finally, the current challenges and future perspectives in the field are discussed, hoping to inspire more future research and to help the further advancement of this field.  相似文献   

14.
T cell therapies require the removal and culture of T cells ex vivo to expand several thousand‐fold. However, these cells often lose the phenotype and cytotoxic functionality for mediating effective therapeutic responses. The extracellular matrix (ECM) has been used to preserve and augment cell phenotype; however, it has not been applied to cellular immunotherapies. Here, a hyaluronic acid (HA)‐based hydrogel is engineered to present the two stimulatory signals required for T‐cell activation—termed an artificial T‐cell stimulating matrix (aTM). It is found that biophysical properties of the aTM—stimulatory ligand density, stiffness, and ECM proteins—potentiate T cell signaling and skew phenotype of both murine and human T cells. Importantly, the combination of the ECM environment and mechanically sensitive TCR signaling from the aTM results in a rapid and robust expansion of rare, antigen‐specific CD8+ T cells. Adoptive transfer of these tumor‐specific cells significantly suppresses tumor growth and improves animal survival compared with T cells stimulated by traditional methods. Beyond immediate immunotherapeutic applications, demonstrating the environment influences the cellular therapeutic product delineates the importance of the ECM and provides a case study of how to engineer ECM‐mimetic materials for therapeutic immune stimulation in the future.  相似文献   

15.
A notable challenge for the design of engineered living materials (ELMs) is programming a cellular system to assimilate resources from its surroundings and convert them into macroscopic materials with specific functions. Here, an ELM that uses Escherichia coli as its cellular chassis and engineered curli nanofibers as its extracellular matrix component is demonstrated. Cell‐laden hydrogels are created by concentrating curli‐producing cultures. The rheological properties of the living hydrogels are modulated by genetically encoded factors and processing steps. The hydrogels have the ability to grow and self‐renew when placed under conditions that facilitate cell growth. Genetic programming enables the gels to be customized to interact with different tissues of the gastrointestinal tract selectively. This work lays a foundation for the application of ELMs with therapeutic functions and extended residence times in the gut.  相似文献   

16.
Cancer stem‐like cells (CSCs) have been shown to initiate tumorigenesis and cancer metastasis in many cancer types. Although identification of CSCs through specific marker expression helps define the CSC compartment, it does not directly provide information on how or why this cancer cell subpopulation is more metastatic or tumorigenic. In this study, the functional and biophysical characteristics of aggressive and lethal inflammatory breast cancer (IBC) CSCs at the single‐cell level are comprehensively profiled using multiple microengineered tools. Distinct functional (cell migration, growth, adhesion, invasion and self‐renewal) and biophysical (cell deformability, adhesion strength and contractility) properties of ALDH+ SUM149 IBC CSCs are found as compared to their ALDH? non‐CSC counterpart, providing biophysical insights into why CSCs has an enhanced propensity to metastasize. It is further shown that the cellular biophysical phenotype can predict and determine IBC cells' tumorigenic ability. SUM149 and SUM159 IBC cells selected and modulated through biophysical attributes—adhesion and stiffness—show characteristics of CSCs in vitro and enhance tumorigenicity in in vivo murine models of primary tumor growth. Overall, the multiparametric cellular biophysical phenotyping and modulation of IBC CSCs yields a new understanding of IBC's metastatic properties and how they might develop and be targeted for therapeutic interventions.  相似文献   

17.
Growth factors are potent stimuli for regulating cell function in tissue engineering strategies, but spatially patterning their presentation in 3D in a facile manner using a single material is challenging. Micropatterning is an attractive tool to modulate the cellular microenvironment with various biochemical and physical cues and study their effects on stem cell behaviors. Implementing heparin's ability to immobilize growth factors, dual‐crosslinkable alginate hydrogels are micropatterned in 3D with photocrosslinkable heparin substrates with various geometries and micropattern sizes, and their capability to establish 3D micropatterns of growth factors within the hydrogels is confirmed. This 3D micropatterning method could be applied to various heparin binding growth factors, such as fibroblast growth factor‐2, vascular endothelial growth factor, transforming growth factor‐betas and bone morphogenetic proteins while retaining the hydrogel's natural degradability and cytocompability. Stem cells encapsulated within these micropatterned hydrogels have exhibited spatially localized growth and differentiation responses corresponding to various growth factor patterns, demonstrating the versatility of the approach in controlling stem cell behavior for tissue engineering and regenerative medicine applications.  相似文献   

18.
The challenge of mimicking the extracellular matrix with artificial scaffolds that are able to reduce immunoresponse is still unmet. Recent findings have shown that mesenchymal stem cells (MSC) infiltrating into the implanted scaffold have effects on the implant integration by improving the healing process. Toward this aim, a novel polyamidoamine‐based nanocomposite hydrogel is synthesized, cross‐linked with porous nanomaterials (i.e., mesoporous silica nanoparticles), able to release chemokine proteins. A comprehensive viscoelasticity study confirms that the hydrogel provides optimal structural support for MSC infiltration and proliferation. The efficiency of this hydrogel, containing the chemoattractant stromal cell‐derived factor 1α (SDF‐1α), in promoting MSC migration in vitro is demonstrated. Finally, subcutaneous implantation of SDF‐1α‐releasing hydrogels in mice results in a modulation of the inflammatory reaction. Overall, the proposed SDF‐1α‐nanocomposite hydrogel proves to have potential for applications in tissue engineering.  相似文献   

19.
Stem cells secrete trophic factors that induce angiogenesis. These soluble factors are promising candidates for stem cell–based therapies, especially for cardiovascular diseases. Mechanical stimuli and biophysical factors presented in the stem cell microenvironment play important roles in guiding their behaviors. However, the complex interplay and precise role of these cues in directing pro‐angiogenic signaling remain unclear. Here, a platform is designed using gelatin methacryloyl hydrogels with tunable rigidity and a dynamic mechanical compression bioreactor to evaluate the influence of matrix rigidity and mechanical stimuli on the secretion of pro‐angiogenic factors from human mesenchymal stem cells (hMSCs). Cells cultured in matrices mimicking mechanical elasticity of bone tissues in vivo show elevated secretion of vascular endothelial growth factor (VEGF), one of representative signaling proteins promoting angiogenesis, as well as increased vascularization of human umbilical vein endothelial cells (HUVECs) with a supplement of conditioned media from hMSCs cultured across different conditions. When hMSCs are cultured in matrices stimulated with a range of cyclic compressions, increased VEGF secretion is observed with increasing mechanical strains, which is also in line with the enhanced tubulogenesis of HUVECs. Moreover, it is demonstrated that matrix stiffness and cyclic compression modulate secretion of pro‐angiogenic molecules from hMSCs through yes‐associated protein activity.  相似文献   

20.
There is a growing interest in the development of dynamic adaptive biomaterials for regulation of cellular functions. However, existing materials are limited to two-state switching of the presentation and removal of cell-adhesive bioactive motifs that cannot emulate the native extracellular matrix (ECM) in vivo with continuously adjustable characteristics. Here, tunable adaptive materials composed of a protein monolayer assembled at a liquid–liquid interface are demonstrated, which adapt dynamically to cell traction forces. An ultrastructure transition from protein monolayer to hierarchical fiber occurs through interfacial jamming. Elongated fibronectin fibers promote formation of elongated focal adhesion structures, increase focal adhesion kinase activation, and enhance neuronal differentiation of stem cells. Cell traction force results in spatial rearrangement of ECM proteins, which feeds back to alter stem cell fate. The reported biomimetic adaptive liquid interface enables dynamic control of stem cell behavior and has potential translational applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号