首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of particles that change shape in response to external stimuli has been a long‐thought goal for producing bioinspired, smart materials. Herein, the temperature‐driven transformation of the shape and morphology of polymer particles composed of polystyrene‐b‐poly(4‐vinylpyridine) (PS‐b‐P4VP) block copolymers (BCPs) and temperature‐responsive poly(N‐isopropylacrylamide) (PNIPAM) surfactants is reported. PNIPAM acts as a temperature‐responsive surfactant with two important roles. First, PNIPAM stabilizes oil‐in‐water droplets as a P4VP‐selective surfactant, creating a nearly neutral interface between the PS and P4VP domains together with cetyltrimethylammonium bromide, a PS‐selective surfactant, to form anisotropic PS‐b‐P4VP particles (i.e., convex lenses and ellipsoids). More importantly, the temperature‐directed positioning of PNIPAM depending on its solubility determines the overall particle shape. Ellipsoidal particles are produced above the critical temperature, whereas convex lens‐shaped particles are obtained below the critical temperature. Interestingly, given that the temperature at which particle shape change occurs depends solely on the lower critical solution temperature (LCST) of the polymer surfactants, facile tuning of the transition temperature is realized by employing other PNIPAM derivatives with different LCSTs. Furthermore, reversible transformations between different shapes of PS‐b‐P4VP particles are successfully demonstrated using a solvent‐adsorption annealing with chloroform, suggesting great promise of these particles for sensing, smart coating, and drug delivery applications.  相似文献   

2.
Porous polymers with well‐orchestrated nanomorphologies are useful in many fields, but high surface area, hierarchical structure, and ordered pores are difficult to be satisfied in one polymer simultaneously. Herein, a solvent‐induced self‐assembly strategy to synthesize hierarchical porous polymers with tunable morphology, mesoporous structure, and microporous pore wall is reported. The poly(ethylene oxide)‐b‐polystyrene (PEO‐b‐PS) diblock copolymer micelles are cross‐linked via Friedel–Crafts reaction, which is a new way to anchor micelles into porous polymers with well‐defined structure. Varying the polarity of the solvent has a dramatic effect upon the oleophobic/oleophylic interaction, and the self‐assembly structure of PEO‐b‐PS can be tailored from aggregated nanoparticles to hollow spheres even mesoporous bulk. A morphological phase diagram is accomplished to systematically evaluate the influence of the composition of PEO‐b‐PS and the mixed solvent component on the pore structure and morphology of products. The hypercrosslinked hollow polymer spheres provide a confined microenvironment for the in situ reduction of K2PdCl4 to ultrasmall Pd nanoparticles, which exhibit excellent catalytic performance in solvent‐free catalytic oxidation of hydrocarbons and alcohols.  相似文献   

3.
An easy fabrication of close‐packed and block copolymer micelles‐based ultrathin membranes for water purification, separation, catalytic, and dye degradation applications is reported. Nanoporous membranes based on the self‐assembly of 2‐(4′‐hydroxybenzeneazo) benzoic acid (HABA)‐polystyrene‐b‐poly(4‐vinylpyridine) (PS‐b‐P4VP) diblock copolymers supramolecular complexes are prepared by simple spin coating on pore‐filled polyethylene terephthalate (PET) track‐etched membranes. The prepared membranes are characterized by scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and water permeation studies. The separation performance is studied by lysozyme protein rejection. The prepared membranes are also used to in situ synthesize gold nanoparticles in the corona of PS‐b‐P4VP spheres for catalytic activity towards the reduction of p‐nitrophenol and degradation of congo red dye in flow through operation mode in a stirred cell membrane reactor. More than 95% reduction for p‐nitrophenol and >98% degradation of Congo red at a sufficiently high flux indicates its suitability for catalytic transformation and environmental remediation applications.  相似文献   

4.
In block copolymer (BCP) nanolithography, microphase separated polystyrene‐block‐polydimethylsiloxane (PS‐b‐PDMS) thin films are particularly attractive as they can form small features and the two blocks can be readily differentiated during pattern transfer. However, PS‐b‐PDMS is challenging because the chemical differences in the blocks can result in poor surface‐wetting, poor pattern orientation control and structural instabilities. Usually the interfacial energies at substrate surface are engineered with the use of a hydroxyl‐terminated polydimethylsiloxane (PDMS‐OH) homopolymer brush. Herein, we report a facile, rapid and tuneable molecular functionalization approach using hexamethyldisilazane (HMDS). The work is applied to both planar and topographically patterned substrates and investigation of graphoepitaxial methods for directed self‐assembly and long‐range translational alignment of BCP domains is reported. The hexagonally arranged in‐plane and out‐of‐plane PDMS cylinders structures formed by microphase separation were successfully used as on‐chip etch masks for pattern transfer to the underlying silicon substrate. The molecular approach developed here affords significant advantages when compared to the more usual PDMS‐OH brushes used.  相似文献   

5.
A novel catalyst functionalization method, based on protein‐encapsulated metallic nanoparticles (NPs) and their self‐assembly on polystyrene (PS) colloid templates, is used to form catalyst‐loaded porous WO3 nanofibers (NFs). The metallic NPs, composed of Au, Pd, or Pt, are encapsulated within a protein cage, i.e., apoferritin, to form unagglomerated monodispersed particles with diameters of less than 5 nm. The catalytic NPs maintain their nanoscale size, even following high‐temperature heat‐treatment during synthesis, which is attributed to the discrete self‐assembly of NPs on PS colloid templates. In addition, the PS templates generate open pores on the electrospun WO3 NFs, facilitating gas molecule transport into the sensing layers and promoting active surface reactions. As a result, the Au and Pd NP‐loaded porous WO3 NFs show superior sensitivity toward hydrogen sulfide, as evidenced by responses (Rair/Rgas) of 11.1 and 43.5 at 350 °C, respectively. These responses represent 1.8‐ and 7.1‐fold improvements compared to that of dense WO3 NFs (Rair/Rgas = 6.1). Moreover, Pt NP‐loaded porous WO3 NFs exhibit high acetone sensitivity with response of 28.9. These results demonstrate a novel catalyst loading method, in which small NPs are well‐dispersed within the pores of WO3 NFs, that is applicable to high sensitivity breath sensors.  相似文献   

6.
A top‐down/bottom‐up approach is demonstrated by combining electron‐beam (e‐beam) lithography and a solvent annealing process. Micellar arrays of polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) with a high degree of lateral order can be produced on a surface where sectoring is defined by e‐beam patterning. The e‐beam is used to crosslink the block copolymer (BCP) film immediately after spin‐coating when the BCP is disordered or in a highly ordered solvent‐annealed film. Any patterns can be written into the BCP by crosslinking. Upon exposure to a preferential solvent for the minor component block followed by drying, cylindrical nanopores are generated within the nonexposed areas by a surface reconstruction process, while, in the exposed areas, the films remain unchanged. Nickel nanodot arrays can be placed over selected areas on a surface by thermal evaporation and lift‐off process.  相似文献   

7.
Light‐induced phenomena occurring in nature and in synthetic materials are fascinating and have been exploited for technological applications. Here visible‐light‐induced formation of a helical superstructure is reported, i.e., a cholesteric liquid crystal phase, in orientationally ordered fluids, i.e., nematic liquid crystals, enabled by a visible‐light‐driven chiral molecular switch. The cyclic‐azobenzene‐based chiral molecular switch exhibits reversible photoisomerization in response to visible light of different wavelengths due to the band separation of n–π* transitions of its trans‐ and cis‐isomers. Green light (530 nm) drives the trans‐to‐cis photoisomerization whereas the cis‐to‐trans isomerization process of the chiral molecular switch can be caused by blue light (440 nm). It is observed that the helical twisting power of this chiral molecular switch increases upon irradiation with green light, which enables reversible induction of helical superstructure in nematic liquid crystals containing a very small quantity of the molecular switch. The occurrence of the light‐induced helical superstructure enables the formation of diffraction gratings in cholesteric films.  相似文献   

8.
Silica nanorods (SNRs) are synthesized and then functionalized with aminoalkoxysilanes to prepare a new class of nitric oxide (NO)‐releasing materials. The aspect ratio and size of the SNRs are tuned by varying the temperature, pH, and silane concentration used during the surfactant‐templated synthesis. N‐Diazeniumdiolate nitric oxide (NO) donors are formed on the secondary amine‐functionalized SNRs by reaction with NO gas under basic conditions. Particle surface modifications are employed to manipulate the NO release kinetics. The diverse morphology (i.e., aspect ratio ~1–8), NO‐release kinetics (2000–14 000 ppb NO/mg particle) and similar sizes (i.e., particle volume ~0.02 μm3) of the resulting NO‐releasing SNRs facilitates further studies of how particle shape and NO flux impacts bactericidal activity against Gram–positive Staphylococcus aureus (S. aureus) and Gram–negative Pseudomonas aeruginosa (P. aeruginosa) bacteria. The bactericidal efficacies of these materials improves with increasing particle aspect ratio and initial NO flux. Both chemical (i.e., NO‐release kinetics) and physical (i.e., morphology) properties greatly influenced the bactericidal activity of these materials.  相似文献   

9.
New synthetic methods capable of controlling structural and compositional complexities of asymmetric nanoparticles (NPs) are very challenging but highly desired. A simple and general synthetic approach to designing sophisticated asymmetric NPs by anisotropically patterning the surface of isotropic metallic NPs with amphiphilic block copolymers (BCPs) is reported. The selective galvanic replacement and seed‐mediated growth of a second metal can be achieved on the exposed surface of metal NPs, resulting in the formation of nanobowls and Janus‐type metal–metal dimers, respectively. Using Ag and Au NPs tethered with amphiphilic block copolymers of poly(ethylene oxide)‐block‐polystyrene (PEO‐b‐PS), anisotropic surface patterning of metallic NPs (e.g., Ag and Au) is shown to be driven by thermodynamical phase segregation of BCP ligands on isotropic metal NPs. Two proof‐of‐concept experiments are given on, i) synthesis of Au nanobowls by a selective galvanic replacement reaction on Janus‐type patched Ag/polymer NPs; and ii) preparation of Au–Pd heterodimers and Au–Au homodimers by a seed‐mediated growth on Janus‐type patched Au/polymer NPs. The method shows remarkable versatility; and it can be easily handled in aqueous solution. This synthetic strategy stands out as the new methodology to design and synthesis asymmetric metal NPs with sophisticated topologies.  相似文献   

10.
Multiaxial (triaxial/coaxial) electrospinning is utilized to fabricate block copolymer (poly(styrene‐b‐isoprene), PS‐b‐PI) nanofibers covered with a silica shell. The thermally stable silica shell allows post‐fabrication annealing of the fibers to obtain equilibrium self‐assembly. For the case of coaxial nanofibers, block copolymers with different isoprene volume fractions are studied to understand the effect of physical confinement and interfacial interaction on self‐assembled structures. Various confined assemblies such as co‐existing cylinders and concentric lamellar rings are obtained with the styrene domain next to the silica shell. This confined assembly is then utilized as a template to guide the placement of functional nanoparticles such as magnetite selectively into the PI domain in self‐assembled nanofibers. To further investigate the effect of interfacial interaction and frustration due to the physically confined environment, triaxial configuration is used where the middle layer of the self‐assembling material is sandwiched between the innermost and outermost silica layers. The results reveal that confined block‐copolymer assembly is significantly altered by the presence and interaction with both inner and outer silica layers. When nanoparticles are incorporated into PS‐b‐PI and placed as the middle layer, the PI phase with magnetite nanoparticles migrates next to the silica layers. The migration of the PI phase to the silica layers is also observed for the blend of PS and PS‐b‐PI as the middle layer. These materials not only provide a platform to further study the effect of confinement and wall interactions on self‐assembly but can also help develop an approach to fabricate multilayered, multistructured nanofibers for high‐end applications such as drug delivery.  相似文献   

11.
Photonic crystals (PCs) are ideal candidates for reflective color pigments with high color purity and brightness due to tunable optical stop band. Herein, the generation of PC microspheres through 3D confined supramolecular assembly of block copolymers (polystyrene‐block‐poly(2‐vinylpyridine), PS‐b‐P2VP) and small molecules (3‐n‐pentadecylphenol, PDP) in emulsion droplets is demonstrated. The intrinsic structural colors of the PC microspheres are effectively regulated by tuning hydrogen‐bonding interaction between P2VP blocks and PDP, where reflected color can be readily tuned across the whole visible spectrum range. Also, the effects of both PDP and homopolymer (hPS) on periodic structure and optical properties of the microspheres are investigated. Moreover, the spectral results of finite element method (FEM) simulation agree well with the variation of structural colors by tuning the periodicity in PC microspheres. The supramolecular microspheres with tunable intrinsic structural color can be potentially useful in the various practical applications including display, anti‐counterfeit printing and painting.  相似文献   

12.
Gas permselective plastic films have been in a great deal of attention in the area of modified atmosphere packaging of fresh produces. Such films must allow transport of the respiring gases, i.e. oxygen and carbon dioxide, in a controlled manner and, moreover, should efficiently remove ethylene gas. Therefore, the development of highly permeable films with high ethylene permselectivity, i.e. high in both permeability and selectivity, was carried out. The concept of ‘mixed matrix membrane’, by which enhanced gas permselectivity can be obtained by incorporation of zeolite particles into the polymeric film, was applied. Fine particles of hydrophobic zeolites, i.e. zeolite beta and ZSM‐5, and the surface‐modified zeolites were used in this study. The films with uniform distribution of zeolite particles (10% w/w) in 70LDPE/30SEBS (styrene‐b‐(ethylene‐ran‐butylene)‐b‐styrene block copolymer) matrix can be prepared by blow film extrusion. Significantly high ethylene permselectivity, i.e. ethylene permeability of 1.78–2.67 × 103 cm3 ? mm/m2 ? day ? atm and ethylene/O2 selectivity of 4.67–8.26, was obtained from the films containing octyl‐modified and phenyl‐modified zeolites. Particular enhancement was observed on the films containing phenyl‐modified zeolites. Crystallinity of polyethylene, transition temperatures and decomposition temperature were, however, indifferent among the studied films. Nevertheless, elongation at break and toughness of the films containing surface‐modified zeolites were superior. Particle–polymer interface could thus be improved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Two medium‐bandgap p‐type organic small molecules H21 and H22 with an alkylsily‐thienyl conjugated side chain on benzo[1,2‐b:4,5‐b′]dithiophene central units are synthesized and used as donors in all‐small‐molecule organic solar cells (SM‐OSCs) with a narrow‐bandgap n‐type small molecule 2,2′‐((2Z,2′Z)‐((4,4,9,9‐tetrahexyl‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐2,7‐diyl)bis(methanylylidene))bis(3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile (IDIC) as the acceptor. In comparison to H21 with 3‐ethyl rhodanine as the terminal group, H22 with cyanoacetic acid esters as the terminal group shows blueshifted absorption, higher charge‐carrier mobility and better 3D charge pathway in blend films. The power conversion efficiency (PCE) of the SM‐OSCs based on H22:IDIC reaches 10.29% with a higher open‐circuit voltage of 0.942 V and a higher fill factor of 71.15%. The PCE of 10.29% is among the top efficiencies of nonfullerene SM‐OSCs reported in the literature to date.  相似文献   

14.
Black phosphorus (BP) with unique 2D structure enables the intercalation of foreign elements or molecules, which makes BP directly relevant to high‐capacity rechargeable batteries and also opens a promising strategy for tunable electronic transport and superconductivity. However, the underlying intercalation mechanism is not fully understood. Here, a comparative investigation on the electrochemically driven intercalation of lithium and sodium using in situ transmission electron microscopy is presented. Despite the same preferable intercalation channels along [100] (zigzag) direction, distinct anisotropic intercalation behaviors are observed, i.e., Li ions activate lateral intercalation along [010] (armchair) direction to form an overall uniform propagation, whereas Na diffusion is limited in the zigzag channels to cause the columnar intercalation. First‐principles calculations indicate that the diffusion of both Li and Na ions along the zigzag direction is energetically favorable, while Li/Na diffusion long the armchair direction encounters an increased energy barrier, but that of Na is significantly larger and insurmountable, which accounts for the orientation‐dependent intercalation channels. The evolution of chemical states during phase transformations (from LixP/NaxP to Li3P/Na3P) is identified by analytical electron diffraction and energy‐loss spectroscopy. The findings elucidate atomistic Li/Na intercalation mechanisms in BP and show potential implications for other similar 2D materials.  相似文献   

15.
The directed self assembly of a 3‐miktoarm star terpolymer (polyisoprene‐arm‐polystyrene‐arm‐polyferrocenylethylmethylsilane (3μ‐ISF)) into a (4.82) square symmetry Archimedean tiling pattern is described. Bulk samples of 3μ‐ISF generate equilibrium columnar (4.82) tile patterns (symmetry p 4 mm) on annealing, which is preceded by a metastable c 2 mm centered rectangular structure. In contrast, in thin films of 3μ‐ISF blended with PS homopolymer, the c 2 mm phase is stable with columns oriented out of plane when the film thickness is below 50 nm. However, the 3μ‐ISF/homopolymer blend rapidly forms a p 4 mm symmetry when the film thickness is ~80 nm, with grain sizes of several μm and excellent order. Defects in the p4mm structure are described.  相似文献   

16.
Block‐copolymer (BCP) nanospheres with hierarchical inner structure are of great interest and importance due to their possible applications in nanotechnology and biomedical engineering. Mesoporous BCP nanospheres with multilayered inner channels are considered as potential drug‐delivery systems and templates for multifunctional nanomaterials. Selective swelling is a facile pore‐making strategy for BCP materials. Herein, the selective swelling‐induced reconstruction of BCP nanospheres is reported. Two poly(styrene‐block‐2‐vinylpyridine) (PS‐b‐P2VP) samples with different compositions (PS23600b‐P2VP10400 and PS27700b‐P2VP4300) are used as model systems. The swelling reconstruction of PS‐b‐P2VP in ethanol, 1‐pyrenebutyric acid (PBA)/ethanol, or HCl/ethanol (pH = 2.61) is characterized by scanning electron microscopy and transmission electron microscopy. It is observed that the length of the swellable block in BCP is a critical factor in determining the behavior and nanostructures of mesoporous BCP nanospheres in selective swelling. Moreover, it is demonstrated that the addition of PBA modifies the swelling structure of PS23600b‐P2VP10400 through the interaction between PBA and P2VP blocks, which results in BCP nanospheres with patterned pores of controllable size. The patterned pores can be reversibly closed by annealing the mesoporous BCP nanospheres in different selective solvents. The controllable and reversible open/closed reconstruction of BCP nanospheres can be used to enclose functional nanoparticles or drugs inside the nanospheres. These mesoporous BCP nanospheres are further decorated with gold nanoparticles by UV photoreduction. The enlarged decoration area in mesoporous BCP nanospheres will enhance their activity and sensitivity as a catalyst and electrochemical sensor.  相似文献   

17.
Polystyrene‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) monoliths containing regular arrays of macropores (diameter ≈1.1 µm, depth ≈0.7 µm) at their surfaces are used to pattern substrates by patterning modes going beyond the functionality of classical solid elastomer stamps. In a first exemplary application, the macroporous PS‐b‐P2VP monoliths are employed as sacrificial templates for the deposition of NaCl nanocrystals and topographically patterned iridium films. One NaCl nanocrystal per macropore is formed by evaporation of NaCl solutions filling the macropores followed by iridium coating. Thermal PS‐b‐P2VP decomposition yields topographically patterned iridium films consisting of ordered arrays of hexagonal cells, each of which contains one NaCl nanocrystal. For the second exemplary application, spongy‐continuous mesopore systems are generated in the macroporous PS‐b‐P2VP monoliths by selective‐swelling induced pore generation. Infiltrating the spongy‐continuous mesopore systems with ink allows capillary microstamping of continuous ink films with holes at the positions of the macropores onto glass slides compatible with advanced light microscopy. Capillary microstamping can be performed multiple times under ambient conditions without reinking and without quality deterioration of the stamped patterns. The macroporous PS‐b‐P2VP monoliths are prepared by double replication of primary macroporous silicon molds via secondary polydimethylsiloxane molds.  相似文献   

18.
Thin‐film electronics are urged to be directly laminated onto human skin for reliable, sensitive biosensing together with feedback transdermal therapy, their self‐power supply using the thermoelectric and moisture‐induced‐electric effects also has gained great attention (skin and on‐skin electronics (On‐skinE) themselves are energy storehouses). However, “thin‐film” On‐skinE 1) cannot install “bulky” heatsinks or sweat transport channels, but the output power of thermoelectric generator and moisture‐induced‐electric generator relies on the temperature difference (?T ) across generator and the ambient humidity (AH), respectively; 2) lack a routing and accumulation of sweat for biosensing, lack targeted delivery of drugs for precise transdermal therapy; and 3) need insulation between the heat‐generating unit and heat‐sensitive unit. Here, two breathable nanowood biofilms are demonstrated, which can help insulate between units and guide the heat and sweat to another in‐plane direction. The transparent biofilms achieve record‐high transport///transport (//: along cellulose nanofiber alignment direction, ⊥: perpendicular direction) of heat (925%) and sweat (338%), winning applications emphasizing on ?T/AH‐dependent output power and “reliable” biosensing. The porous biofilms are competent in applications where “sensitive” biosensing (transporting// sweat up to 11.25 mm s?1 at the 1st second), “insulating” between units, and “targeted” delivery of saline‐soluble drugs are of uppermost priority.  相似文献   

19.
Alternative low‐temperature solution‐processed hole‐transporting materials (HTMs) without dopant are critical for highly efficient perovskite solar cells (PSCs). Here, two novel small molecule HTMs with linear π‐conjugated structure, 4,4′‐bis(4‐(di‐p‐toyl)aminostyryl)biphenyl (TPASBP) and 1,4′‐bis(4‐(di‐p‐toyl)aminostyryl)benzene (TPASB), are applied as hole‐transporting layer (HTL) by low‐temperature (sub‐100 °C) solution‐processed method in p‐i‐n PSCs. Compared with standard poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonic acid) (PEDOT:PSS) HTL, both TPASBP and TPASB HTLs can promote the growth of perovskite (CH3NH3PbI3) film consisting of large grains and less grain boundaries. Furthermore, the hole extraction at HTL/CH3NH3PbI3 interface and the hole transport in HTL are also more efficient under the conditions of using TPASBP or TPASB as HTL. Hence, the photovoltaic performance of the PSCs is dramatically enhanced, leading to the high efficiencies of 17.4% and 17.6% for the PSCs using TPASBP and TPASB as HTL, respectively, which are ≈40% higher than that of the standard PSC using PEDOT:PSS HTL.  相似文献   

20.
Controllable and efficient synthesis of noble metal/transition‐metal oxide (TMO) composites with tailored nanostructures and precise components is essential for their application. Herein, a general mercaptosilane‐assisted one‐pot coassembly approach is developed to synthesize ordered mesoporous TMOs with agglomerated‐free noble metal nanoparticles, including Au/WO3, Au/TiO2, Au/NbOx, and Pt/WO3. 3‐mercaptopropyl trimethoxysilane is applied as a bridge agent to cohydrolyze with metal oxide precursors by alkoxysilane moieties and interact with the noble metal source (e.g., HAuCl4 and H2PtCl4) by mercapto (? SH) groups, resulting in coassembly with poly(ethylene oxide)‐b‐polystyrene. The noble metal decorated TMO materials exhibit highly ordered mesoporous structure, large pore size (≈14–20 nm), high specific surface area (61–138 m2 g?1), and highly dispersed noble metal (e.g., Au and Pt) nanoparticles. In the system of Au/WO3, in situ generated SiO2 incorporation not only enhances their thermal stability but also induces the formation of ε‐phase WO3 promoting gas sensing performance. Owning to its specific compositions and structure, the gas sensor based on Au/WO3 materials possess enhanced ethanol sensing performance with a good response (Rair/Rgas = 36–50 ppm of ethanol), high selectivity, and excellent low‐concentration detection capability (down to 50 ppb) at low working temperature (200 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号