首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a matrix metalloproteinase (MMP)‐triggered tumor targeted mesoporous silica nanoparticle (MSN) is designed to realize near‐infrared (NIR) photothermal‐responsive drug release and combined chemo/photothermal tumor therapy. Indocyanine green (ICG) and doxorubicin (DOX) are both loaded in the MSN modified with thermal‐cleavable gatekeeper (Azo‐CD), which can be decapped by ICG‐generated hyperthermia under NIR illumination. A peptidic sequence containing a short PEG chain, matrix metalloproteinase (MMP) substrate (PLGVR) and tumor cell targeting motif (RGD) are further decorated on the MSN via a host–guest interaction. The PEG chain can protect the MSN during the circulation and be cleaved off in the tumor tissues with overexpressed MMP, and then the RGD motif is switched on to target tumor cells. After the tumor‐triggered targeting process, the NIR irradiation guided by ICG fluorescence can trigger cytosol drug release and realize combined chemo/photothermal therapy.  相似文献   

2.
Self‐assembly of gold nanoparticles demonstrates a promising approach to realize enhanced photoacoustic imaging (PAI) and photothermal therapy (PTT) for accurate diagnosis and efficient cancer therapy. Herein, unique photothermal assemblies with tunable patterns of gold nanoparticles (including arcs, rings, ribbons, and vesicles) on poly(lactic‐co‐glycolic acid) (PLGA) spheres are constructed taking advantage of emulsion‐confined and polymer‐directed self‐assembly strategies. The influencing factors and formation mechanism to produce the assemblies are investigated in details. Both the emulsion structure and migration behaviors of amphiphilic block copolymer tethered gold nanoparticles are found to contribute to the formation of versatile photothermal assemblies. Hyaluronic acid‐modified R‐PLGA‐Au (RPA) exhibits outstanding photothermal performances under NIR laser irradiation, which is induced by strong plasmonic coupling between adjacent gold nanoparticles. It is interesting that secondary assembly of RPA can be triggered by NIR laser irradiation. Prolonged residence time in tumors is achieved after RPA assemblies are fused into superstructures with larger sizes, realizing real‐time monitoring of the therapeutic processes via PAI with enhanced photoacoustic signals. Notably, synergistic effect resulting from PTT‐enhanced chemotherapy is realized to demonstrate high antitumor performance. This work provides a facile strategy to construct flexible photothermal assemblies with favorable properties for imaging‐guided synergistic therapy.  相似文献   

3.
The design and development of multifunctional carriers for drug delivery based on hollow nanoparticles (HNPs) have attracted intense interests. Ordinary spherical HNPs are demonstrated to be promising candidates. However, the application of HNPs with special morphologies has rarely been reported. HNPs with sharp horns are expected to own higher endocytosis efficiencies than spherical counterparts. In this work, novel starlike hollow silica nanoparticles (SHNPs) with different sizes are proposed as platforms for the fabrication of redox‐triggered multifunctional systems for synergy of gene therapy and chemotherapy. The CD‐PGEA gene vectors (consisting of β‐CD cores and ethanolamine‐functionalized poly(glycidyl methacrylate) (denoted BUCT‐PGEA) arms) are introduced ingeniously onto the surfaces of SHNPs with plentiful disulfide bond‐linked adamantine guests. The resulting supramolecular assemblies (SHNP‐PGEAs) possess redox‐responsive gatekeepers for loaded drugs in the cavities of SHNPs. Meanwhile, they also demonstrate excellent performances to deliver genes. The gene transfection efficiencies, controlled drug release behaviors, and synergistic antitumor effect of hollow silica‐based carriers with different morphologies are investigated in detail. Compared with ordinary spherical HNP‐based counterparts, SHNP‐PGEA carriers with six sharp horns are proven to be superior gene vectors and possess better efficacy for cellular uptake and antitumor effects. The present multifunctional carriers based on SHNPs will have promising applications in drug/gene codelivery and cancer treatment.  相似文献   

4.
Multimodal imaging guided synergistic therapy promises more accurate diagnosis than any single imaging modality, and higher therapeutic efficiency than any single one or their simple “mechanical” combination. Herein, we report a dual‐stimuli responsive nanotheranostic based on a hierarchical nanoplatform, composed of mesoporous silica‐coated gold nanorods (GNR@SiO2), Indocyanine Green (ICG), and 5‐fluorouracil (5‐FU), for in vivo multimodal imaging guided synergistic therapy. The 5‐FU loaded ICG‐conjugated silica‐coated gold nanorods (GNR@SiO2‐5‐FU‐ICG) was able to response specifically to the two stimuli of pH change and near‐infrared (NIR) light irradiation. Both the NIR light irradiation and acidic environment accelerated the 5‐FU release. Meanwhile, the heat generation and singlet oxygen production can be induced by GNR@SiO2‐5‐FU‐ICG upon light irradiation. Most intriguingly, the nanoplatform also promises multimodal imaging such as two‐photon luminescence, fluorescence, photoacoustic, photothermal imaging, as well as trimodal synergistic therapy such as photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy. The cancer theranostic capability of GNR@SiO2‐5‐FU‐ICG was evaluated both in vitro and in vivo. The trimodal synergistic therapy with the guidance of multimodal imaging exhibited remarkably enhanced treatment efficacy. This concept of a hierarchical nanoplatform integrates multiple diagnostic/therapeutic modalities into one platform, which can potentially be applied as personalized nanomedicine with drug delivery, diagnosis, and treatment.  相似文献   

5.
Previously, a large volume of papers reports that gold nanorods (Au NRs) are able to effectively kill cancer cells upon high laser doses (usually 808 nm, 1–48 W/cm2) irradiation, leading to hyperthermia‐induced destruction of cancer cells, i.e, photothermal therapy (PTT) effects. Combination of Au NRs‐mediated PTT and organic photosensitizers‐mediated photodynamic therapy (PDT) were also reported to achieve synergistic PTT and PDT effects on killing cancer cells. Herein, we demonstrate for the first time that Au NRs alone can sensitize formation of singlet oxygen (1O2) and exert dramatic PDT effects on complete destrcution of tumors in mice under very low LED/laser doses of single photon NIR (915 nm, <130 mW/cm2) light excitation. By changing the NIR light excitation wavelengths, Au NRs‐mediated phototherapeutic effects can be switched from PDT to PTT or combination of both. Both PDT and PTT effects were confirmed by measurements of reactive oxygen species (ROS) and heat shock protein (HSP 70), singlet oxygen sensor green (SOSG) sensing, and sodium azide quenching in cellular experiments. In vivo mice experiments further show that the PDT effect via irradiation of Au NRs by 915 nm can destruct the B16F0 melanoma tumor in mice far more effectively than doxorubicin (a clinically used anti‐cancer drug) as well as the PTT effect (via irradiation of Au NRs by 780 nm light). In addition, we show that Au NRs can emit single photon‐induced fluorescence to illustrate their in vivo locations/distribution.  相似文献   

6.
Targeting peptide‐modified magnetic graphene‐based mesoporous silica (MGMSPI) are synthesized, characterized, and developed as a multifunctional theranostic platform. This system exhibits many merits, such as biocompatibility, high near‐infrared photothermal heating, facile magnetic separation, large T2 relaxation rates (r2), and a high doxorubicin (DOX) loading capacity. In vitro and in vivo results demonstrate that DOX‐loaded MGMSPI (MGMSPID) can integrate magnetic resonance imaging, dual‐targeting recognition (magnetic targeting and receptor‐mediated active targeting), and chemo‐photothermal therapy into a single system for a visualized‐synergistic therapy of glioma. In addition, it is observed that the MGMSPID system has heat‐stimulated, pH‐responsive, sustained release properties. All of these characteristics would provide a robust multifunctional theranostic platform for visualized glioma therapy.  相似文献   

7.
Multi‐modality imaging‐guided cancer therapy is considered as a powerful theranostic platform enabling simultaneous precise diagnosis and treatment of cancer. However, recently reported multifunctional systems with multiple components and sophisticate structures remain major obstacles for further clinical translation. In this work, a single‐photomolecular theranostic nanoplatform is fabricated via a facile nanoprecipitation strategy. By encapsulating a semiconductor oligomer (IT‐S) into an amphiphilic lipid, water‐dispersible IT‐S nanoparticles (IT‐S NPs) are prepared. The obtained IT‐S NPs have a very simple construction and possess ultra‐stable near‐infrared (NIR) fluorescence (FL)/photoacoustic (PA) dual‐modal imaging and high photothermal conversion efficiency of 72.3%. Accurate spatiotemporal distribution profiles of IT‐S NPs are successfully visualized by NIR FL/PA dual‐modal imaging. With the comprehensive in vivo imaging information provided by IT‐S NPs, tumor photothermal ablation is readily realized under precise manipulation of laser irradiation, which greatly improves the therapeutic efficacy without any obvious side effects. Therefore, the IT‐S NPs allow high tumor therapeutic efficacy under the precise guidance of FL/PA imaging techniques and thus hold great potential as an effective theranostic platform for future clinical applications.  相似文献   

8.
As new 2D layered nanomaterials, Bi2O2Se nanoplates have unique semiconducting properties that can benefit biomedical applications. Herein, a facile top‐down approach for the synthesis of Bi2O2Se quantum dots (QDs) in a solution is described. The Bi2O2Se QDs with a size of 3.8 nm and thickness of 1.9 nm exhibit a high photothermal conversion coefficient of 35.7% and good photothermal stability. In vitro and in vivo assessments demonstrate that the Bi2O2Se QDs possess excellent photoacoustic (PA) performance and photothermal therapy (PTT) efficiency. After systemic administration, the Bi2O2Se QDs accumulate passively in tumors enabling efficient PA imaging of the entire tumors to facilitate imaging‐guided PTT without obvious toxicity. Furthermore, the Bi2O2Se QDs which exhibit degradability in aqueous media not only have sufficient stability during in vivo circulation to perform the designed therapeutic functions, but also can be discharged harmlessly from the body afterward. The results reveal the great potential of Bi2O2Se QDs as a biodegradable multifunctional agent in medical applications.  相似文献   

9.
Light‐triggered drug delivery based on near‐infrared (NIR)‐mediated photothermal nanocarriers has received tremendous attention for the construction of cooperative therapeutic systems in nanomedicine. Herein, a new paradigm of light‐responsive drug carrier that doubles as a photothermal agent is reported based on the NIR light‐absorber, Rb x WO3 (rubidium tungsten bronze, Rb‐TB) nanorods. With doxorubicin (DOX) payload, the DOX‐loaded Rb‐TB composite (Rb‐TB‐DOX) simultaneously provides a burst‐like drug release and intense heating effect upon 808‐nm NIR light exposure. MTT assays show the photothermally enhanced antitumor activity of Rb‐TB‐DOX to the MCF‐7 cancer cells. Most remarkably, Rb‐TB‐DOX combined with NIR irradiation also shows dramatically enhanced chemotherapeutic effect to DOX‐resistant MCF‐7 cells compared with free DOX, demonstrating the enhanced efficacy of combinational chemo‐photothermal therapy for potentially overcoming drug resistance in cancer chemotherapy. Furthermore, in vivo study of combined chemo‐photothermal therapy is also conducted and realized on pancreatic (Pance‐1) tumor‐bearing nude mice. Apart from its promise for cancer therapy, the as‐prepared Rb‐TB can also be employed as a new dual‐modal contrast agent for photoacoustic tomography and (PAT) X‐ray computed tomography (CT) imaging because of its high NIR optical absorption capability and strong X‐ray attenuation ability, respectively. The results presented in the current study suggest promise of the multifunctional Rb x WO3 nanorods for applications in cancer theranostics.  相似文献   

10.
Surface-enhanced Raman scattering (SERS) imaging has emerged as a promising tool for guided cancer diagnosis and synergistic therapies, such as combined chemotherapy and photothermal therapy (chemo-PTT). Yet, existing therapeutic agents often suffer from low SERS sensitivity, insufficient photothermal conversion, or/and limited drug loading capacity. Herein, a multifunctional theragnostic nanoplatform consisting of mesoporous silica-coated gold nanostar with a cyclic Arg-Gly-Asp (RGD)-coated gold nanocluster shell (named RGD–pAS@AuNC) is reported that exhibits multiple “hot spots” for pronouncedly enhanced SERS signals and improved near-infrared (NIR)-induced photothermal conversion efficiency (85.5%), with a large capacity for high doxorubicin (DOX) loading efficiency (34.1%, named RGD/DOX–pAS@AuNC) and effective NIR-triggered DOX release. This nanoplatform shows excellent performance in xenograft tumor model of HeLa cell targeting, negligible cytotoxicity, and good stability both in vitro and in vivo. By SERS imaging, the optimal temporal distribution of injected RGD/DOX–pAS@AuNCs at the tumor site is identified for NIR-triggered local chemo-PTT toward the tumor, achieving ultraeffective therapy in tumor cells and tumor-bearing mouse model with 5 min of NIR irradiation (0.5 W cm−2). This work offers a promising approach to employing SERS imaging for effective noninvasive tumor treatment by on-site triggered chemo-PTT.  相似文献   

11.
Cancer nanotheranostics, integrating both diagnostic and therapeutic functions into nanoscale agents, are advanced solutions for cancer management. Herein, a light‐responsive biodegradable nanorattle‐based perfluoropentane‐(PFP)‐filled mesoporous‐silica‐film‐coated gold nanorod (GNR@SiO2‐PFP) is strategically designed and prepared for enhanced ultrasound (US)/photoacoustic (PA) dual‐modality imaging guided photothermal therapy of melanoma. The as‐prepared nanorattles are composed of a thin mesoporous silica film as the shell, which endows the nanoplatform with flexible morphology and excellent biodegradability, as well as large cavity for PFP filling. Upon 808 nm laser irradiation, the loaded PFP will undergo a liquid–gas phase transition due to the heat generation from GNRs, thus generating nanobubbles followed by the coalescence into microbubbles. The conversion of nanobubbles to microbubbles can improve the intratumoral permeation and retention in nonmicrovascular tissue, as well as enhance the tumor‐targeted US imaging signals. This nanotheranostic platform exhibits excellent biocompatibility and biodegradability, distinct gas bubbling phenomenon, good US/PA imaging contrast, and remarkable photothermal efficiency. The results demonstrate that the GNR@SiO2‐PFP nanorattles hold great potential for cancer nanotheranostics.  相似文献   

12.
Activatable theranostic agents that can be activated by tumor microenvironment possess higher specificity and sensitivity. Here, activatable nanozyme‐mediated 2,2′‐azino‐bis (3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) loaded ABTS@MIL‐100/poly(vinylpyrrolidine) (AMP) nanoreactors (NRs) are developed for imaging‐guided combined tumor therapy. The as‐constructed AMP NRs can be specifically activated by the tumor microenvironment through a nanozyme‐mediated “two‐step rocket‐launching‐like” process to turn on its photoacoustic imaging signal and photothermal therapy (PTT) function. In addition, simultaneously producing hydroxyl radicals in response to the high H2O2 level of the tumor microenvironment and disrupting intracellular glutathione (GSH) endows the AMP NRs with the ability of enhanced chemodynamic therapy (ECDT), thereby leading to more efficient therapeutic outcome in combination with tumor‐triggered PTT. More importantly, the H2O2‐activated and acid‐enhanced properties enable the AMP NRs to be specific to tumors, leaving the normal tissues unharmed. These remarkable features of AMP NRs may open a new avenue to explore nanozyme‐involved nanoreactors for intelligent, accurate, and noninvasive cancer theranostics.  相似文献   

13.
Near‐infrared (NIR) light is widely used for noninvasive optical diagnosis and phototherapy. However, current research focuses on the first NIR window (NIR‐I, 650–950 nm), while the second NIR window (NIR‐II, 1000–1700 nm) is far less exploited. The development of the first organic photothermal nanoagent (SPNI‐II) with dual‐peak absorption in both NIR windows and its utilization in photothermal therapy (PTT) are reported herein. Such a nanoagent comprises a semiconducting copolymer with two distinct segments that respectively and identically absorb NIR light at 808 and 1064 nm. With the photothermal conversion efficiency of 43.4% at 1064 nm generally higher than other inorganic nanomaterials, SPNI‐II enables superior deep‐tissue heating at 1064 nm over that at 808 nm at their respective safety limits. Model deep‐tissue cancer PTT at a tissue depth of 5 mm validates the enhanced antitumor effect of SPNI‐II when shifting laser irradiation from the NIR‐I to the NIR‐II window. The good biodistribution and facile synthesis of SPNI‐II also allow it to be doped with an NIR dye for fluorescence‐imaging‐guided NIR‐II PTT through systemic administration. Thus, this study paves the way for the development of new polymeric nanomaterials to advance phototherapy.  相似文献   

14.
The rising concerns of the recurrence and bone deficiency in surgical treatment of malignant bone tumors have raised an urgent need of the advance of multifunctional therapeutic platforms for efficient tumor therapy and bone regeneration. Herein, the construction of a multifunctional biomaterial system is reported by the integration of 2D Nb2C MXene wrapped with S‐nitrosothiol (R? SNO)‐grafted mesoporous silica with 3D‐printing bioactive glass (BG) scaffolds (MBS). The near infrared (NIR)‐triggered photonic hyperthermia of MXene in the NIR‐II biowindow and precisely controlled nitric oxide (NO) release are coordinated for multitarget ablation of bone tumors to enhance localized osteosarcoma treatment. The in situ formed phosphorus and calcium components degraded from BG scaffold promote bone‐regeneration bioactivity, augmented by sufficient blood supply triggered by on‐demand NO release. The tunable NO generation plays a crucial role in sequential adjuvant tumor ablation, combinatory promotion of coupled vascularization, and bone regeneration. This study demonstrates a combinatory osteosarcoma ablation and a full osseous regeneration as enabled by the implantation of MBS. The design of multifunctional scaffolds with the specific features of controllable NO release, highly efficient photothermal conversion, and stimulatory bone regeneration provides an intriguing biomaterial platform for the diversified treatment of bone tumors.  相似文献   

15.
Conjugated polymers with strong absorbance in the near‐infrared (NIR) region have been widely explored as photothermal therapy agents due to their excellent photostability and high photothermal conversion efficiency. Herein, polypyrrole (PPy) nanoparticles are fabricated by using bovine serum albumin (BSA) as the stabilizing agent, which if preconjugated with photosensitizer chlorin e6 (Ce6) could offer additional functionalities in both imaging and therapy. The obtained PPy@BSA‐Ce6 nanoparticles exhibit little dark toxicity to cells, and are able to trigger both photodynamic therapy (PDT) and photothermal therapy (PTT). As a fluorescent molecule that in the meantime could form chelate complex with Gd3+, Ce6 in PPy@BSA‐Ce6 nanoparticles after being labeled with Gd3+ enables dual‐modal fluorescence and magnetic resonance (MR) imaging, which illustrate strong tumor uptake of those nanoparticles after intravenous injection into tumor‐bearing mice. In vivo combined PDT and PTT treatment is then carried out after systemic administration of PPy@BSA‐Ce6, achieving a remarkably improved synergistic therapeutic effect compared to PDT or PTT alone. Hence, a rather simple one‐step approach to fabricate multifunctional nanoparticles based on conjugated polymers, which appear to be promising in cancer imaging and combination therapy, is presented.  相似文献   

16.
Malignant melanoma is a highly aggressive tumor resistant to chemotherapy. Therefore, the development of new highly effective therapeutic agents for the treatment of malignant melanoma is highly desirable. In this study, a new class of polymeric photothermal agents based on poly(N‐phenylglycine) (PNPG) suitable for use in near‐infrared (NIR) phototherapy of malignant melanoma is designed and developed. PNPG is obtained via polymerization of N‐phenylglycine (NPG). Carboxylate functionality of NPG allows building multifunctional systems using covalent bonding. This approach avoids complicated issues typically associated with preparation of polymeric photothermal agents. Moreover, PNPG skeleton exhibits pH‐responsive NIR absorption and an ability to generate reactive oxygen species, which makes its derivatives attractive photothermal therapy (PTT)/photodynamic therapy (PDT) dual‐modal agents with pH‐responsive features. PNPG is modified using hyaluronic acid (HA) and polyethylene glycol diamine (PEG‐diamine) acting as the coupling agent. The resultant HA‐modified PNPG (PNPG‐PEG‐HA) shows negligible cytotoxicity and effectively targets CD44‐overexpressing cancer cells. Furthermore, the results of in vitro and in vivo experiments reveal that PNPG‐PEG‐HA selectively kills B16 cells and suppresses malignant melanoma tumor growth upon exposure to NIR light (808 nm), indicating that PNPG‐PEG‐HA can serve as a very promising nanoplatform for targeted dual‐modality PTT/PDT of melanoma.  相似文献   

17.
A multifunctional platform is reported for synergistic therapy with controlled drug release, magnetic hyperthermia, and photothermal therapy, which is composed of graphene quantum dots (GQDs) as caps and local photothermal generators and magnetic mesoporous silica nanoparticles (MMSN) as drug carriers and magnetic thermoseeds. The structure, drug release behavior, magnetic hyperthermia capacity, photothermal effect, and synergistic therapeutic efficiency of the MMSN/GQDs nanoparticles are investigated. The results show that monodisperse MMSN/GQDs nanoparticles with the particle size of 100 nm can load doxorubicin (DOX) and trigger DOX release by low pH environment. Furthermore, the MMSN/GQDs nanoparticles can efficiently generate heat to the hyperthermia temperature under an alternating magnetic field or by near infrared irradiation. More importantly, breast cancer 4T1 cells as a model cellular system, the results indicate that compared with chemotherapy, magnetic hyperthermia or photothermal therapy alone, the combined chemo‐magnetic hyperthermia therapy or chemo‐photothermal therapy with the DOX‐loaded MMSN/GQDs nanosystem exhibits a significant synergistic effect, resulting in a higher efficacy to kill cancer cells. Therefore, the MMSN/GQDs multifunctional platform has great potential in cancer therapy for enhancing the therapeutic efficiency.  相似文献   

18.
Photoacoustic imaging‐guided photothermal therapy in the second near‐infrared (NIR‐II) window shows promise for clinical deep‐penetrating tumor phototheranostics. However, ideal photothermal agents in the NIR‐II window are still rare. Here, the emeraldine salt of polyaniline (PANI‐ES), especially synthesized by a one‐pot enzymatic reaction on sodium bis(2‐ethylhexyl) sulfosuccinate (AOT) vesicle surface (PANI‐ES@AOT, λmax ≈ 1000 nm), exhibits excellent dispersion in physiological environment and remarkable photothermal ability at pH 6.5 (photothermal conversion efficiency of 43.9%). As a consequence of the enhanced permeability and retention effect of tumors and the doping‐induced photothermal effect of PANI‐ES@AOT, this pH‐sensitive NIR‐II photothermal agent allows tumor acidity phototheranostics with minimized pseudosignal readout and subdued normal tissue damage. Moreover, the enhanced fluidity of vesicle membrane triggered by heating is beneficial for drug release and allows precise synergistic therapy for an improved therapeutic effect. This study highlights the potential of template‐oriented (or interface‐confined) enzymatic polymerization reactions for the construction of conjugated polymers with desired biomedical applications.  相似文献   

19.
The combination of diagnostic and therapeutic functions in a single theranostic nanoagent generally requires the integration of multi‐ingredients. Herein, a cytotoxic near‐infrared (NIR) dye (IR‐797) and its nanoassembly are reported for multifunctional cancer theranostics. The hydrophobic IR‐797 molecules are self‐assembled into nanoparticles, which are further modified with an amphiphilic polymer (C18PMH‐PEG5000) on the surface. The prepared PEG‐IR‐797 nanoparticles (PEG‐IR‐797 NPs) possess inherent cytotoxicity from the IR‐797 dye and work as a chemotherapeutic drug which induces apoptosis of cancer cells. The IR‐797 NPs are found to have an ultrahigh mass extinction coefficient (444.3 L g?1 cm?1 at 797 nm and 385.9 L g?1 cm?1 at 808 nm) beyond all reported organic nanomaterials (<40 L g?1 cm?1) for superior photothermal therapy (PTT). In addition, IR‐797 shows some aggregation‐induced‐emission (AIE) properties. Combining the merits of good NIR absorption, high photothermal energy conversion efficiency, and AIE, makes the PEG‐IR‐797 NPs useful for multimodal NIR AIE fluorescence, photoacoustic, and thermal imaging‐guided therapy. The research exhibits the possibility of using a single ingredient and entity to perform multimodal NIR fluorescence, photoacoustic, and thermal imaging‐guided chemo‐/photothermal combination therapy, which may trigger wide interest from the fields of nanomedicine and medicinal chemistry to explore multifunctional theranostic organic molecules.  相似文献   

20.
Near infrared (NIR) light triggered phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) affords superior outcome in cancer treatment. However, the reactive oxygen species (ROS) generated by NIR‐excited upconversion nanostructure is limited by the feeble upconverted light which cannot activate PDT agents efficiently. Here, an IR‐808 dye sensitized upconversion nanoparticle (UCNP) with a chlorin e6 (Ce6)‐functionalized silica layer is developed for PDT agent. The two booster effectors (dye‐sensitization and core–shell enhancement) synergistically amplify the upconversion efficiency, therefore achieving superbright visible emission under low 808 nm light excitation. The markedly amplified red light subsequently triggers the photosensitizer (Ce6) to produce large amount of ROS for efficient PDT. After the silica is endowed with positive surface, these PDT nanoparticles can be easily grafted on MoS2 nanosheet. As the optimal laser wavelength of UCNPs is consistent with that of MoS2 nanosheet for PTT, the invented nanoplatform generates both abundant ROS and local hyperthermia upon a single 808 nm laser irradiation. Both the in vitro and in vivo assays validate that the innovated nanostructure presents excellent cancer cell inhibition effectiveness by taking advantages of the synergistic PTT and PDT, simultaneously, posing trimodal (upconversion luminescence/computed tomography (CT)/magnetic resonance imaging (MRI) imaging capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号