首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrocatalytic activity of Pt‐based alloys exhibits a strong dependence on their electronic structures, but a relationship between electronic structure and oxygen reduction reaction (ORR) activity in Ag‐based alloys is still not clear. Here, a vapor deposition based approach is reported for the preparation of Ag75M25 (M = Cu, Co, Fe, and In) and Agx Cu100?x (x = 0, 25, 45, 50, 55, 75, 90, and 100) nanocatalysts and their electronic structures are determined by valence band spectra. The relationship of the d‐band center and ORR activity exhibits volcano‐shape behaviors, where the maximum catalytic activity is obtained for Ag75Cu25 alloys. The ORR enhancement of Ag75Cu25 alloys originates from the 0.12 eV upshift in d‐band center relative to pure Ag, which is different from the downshift in the d‐band center in Pt‐based alloys. The activity trend for these Ag75M25 alloys is in the order of Ag75Cu25 > Ag75Fe25 > Ag75Co25. These results provide an insight to understand the activity and stability enhancement of Ag75Cu25 and Ag50Cu50 catalysts by alloying.  相似文献   

2.
Searching for highly efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) using nonnoble metal‐based catalysts is essential for the development of many energy conversion systems, including rechargeable fuel cells and metal–air batteries. Here, Co9–xFexS8/Co,Fe‐N‐C hybrids wrapped by reduced graphene oxide (rGO) (abbreviated as S‐Co9–xFexS8@rGO) are synthesized through a semivulcanization and calcination method using graphene oxide (GO) wrapped bimetallic zeolite imidazolate framework (ZIF) Co,Fe‐ZIF (CoFe‐ZIF@GO) as precursors. Benefiting from the synergistic effect of OER active CoFeS and ORR active Co,Fe‐N‐C in a single component, as well as high dispersity and enhanced conductivity derived from rGO coating and Fe‐doping, the obtained S‐Co9–xFexS8@rGO‐10 catalyst shows an ultrasmall overpotential of ≈0.29 V at 10 mA cm?2 in OER and a half‐wave potential of 0.84 V in ORR, combining a superior oxygen electrode activity of ≈0.68 V in 0.1 m KOH.  相似文献   

3.
Carbon‐based nanocomposites have shown promising results in replacing commercial Pt/C as high‐performance, low cost, nonprecious metal‐based oxygen reduction reaction (ORR) catalysts. Developing unique nanostructures of active components (e.g., metal oxides) and carbon materials is essential for their application in next generation electrode materials for fuel cells and metal–air batteries. Herein, a general approach for the production of 1D porous nitrogen‐doped graphitic carbon fibers embedded with active ORR components, (M/MOx, i.e., metal or metal oxide nanoparticles) using a facile two‐step electrospinning and annealing process is reported. Metal nanoparticles/nanoclusters nucleate within the polymer nanofibers and subsequently catalyze graphitization of the surrounding polymer matrix and following oxidation, create an interconnected graphite–metal oxide framework with large pore channels, considerable active sites, and high specific surface area. The metal/metal oxide@N‐doped graphitic carbon fibers, especially Co3O4, exhibit comparable ORR catalytic activity but superior stability and methanol tolerance versus Pt in alkaline solutions, which can be ascribed to the synergistic chemical coupling effects between Co3O4 and robust 1D porous structures composed of interconnected N‐doped graphitic nanocarbon rings. This finding provides a novel insight into the design of functional electrocatalysts using electrospun carbon nanomaterials for their application in energy storage and conversion fields.  相似文献   

4.
Iron–nitrogen–carbon materials (Fe–N–C) are known for their excellent oxygen reduction reaction (ORR) performance. Unfortunately, they generally show a laggard oxygen evolution reaction (OER) activity, which results in a lethargic charging performance in rechargeable Zn–air batteries. Here porous S‐doped Fe–N–C nanosheets are innovatively synthesized utilizing a scalable FeCl3‐encapsulated‐porphyra precursor pyrolysis strategy. The obtained electrocatalyst exhibits ultrahigh ORR activity (E1/2 = 0.84 V vs reversible hydrogen electrode) and impressive OER performance (Ej = 10 = 1.64 V). The potential gap (ΔE = Ej = 10 ? E1/2) is 0.80 V, outperforming that of most highly active bifunctional electrocatalysts reported to date. Furthermore, the key role of S involved in the atomically dispersed Fe–Nx species on the enhanced ORR and OER activities is expounded for the first time by ultrasound‐assisted extraction of the exclusive S source (taurine) from porphyra. Moreover, the assembled rechargeable Zn–air battery comprising this bifunctional electrocatalyst exhibits higher power density (225.1 mW cm?2) and lower charging–discharging overpotential (1.00 V, 100 mA cm?2 compared to Pt/C + RuO2 catalyst). The design strategy can expand the utilization of earth‐abundant biomaterial‐derived catalysts, and the mechanism investigations of S doping on the structure–activity relationship can inspire the progress of other functional electrocatalysts.  相似文献   

5.
This study presents a novel metal‐organic‐framework‐engaged synthesis route based on porous tellurium nanotubes as a sacrificial template for hierarchically porous 1D carbon nanotubes. Furthermore, an ultrathin Fe‐ion‐containing polydopamine layer has been introduced to generate highly effective FeNxC active sites into the carbon framework and to induce a high degree of graphitization. The synergistic effects between the hierarchically porous 1D carbon structure and the embedded FeNxC active sites in the carbon framework manifest in superior catalytic activity toward oxygen reduction reaction (ORR) compared to Pt/C catalyst in both alkaline and acidic media. A rechargeable zinc‐air battery assembled in a decoupled configuration with the nonprecious pCNT@Fe@GL/CNF ORR electrode and Ni‐Fe LDH/NiF oxygen evolution reaction (OER) electrode exhibits charge–discharge overpotentials similar to the counterparts of Pt/C ORR electrode and IrO2 OER electrode.  相似文献   

6.
Herein, an approach is reported for fabrication of Co‐Nx‐embedded 1D porous carbon nanofibers (CNFs) with graphitic carbon‐encased Co nanoparticles originated from metal–organic frameworks (MOFs), which is further explored as a bifunctional electrocatalyst for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Electrochemical results reveal that the electrocatalyst prepared by pyrolysis at 1000 °C (CoNC‐CNF‐1000) exhibits excellent catalytic activity toward ORR that favors the four‐electron ORR process and outstanding long‐term stability with 86% current retention after 40 000 s. Meanwhile, it also shows superior electrocatalytic activity toward OER, reaching a lower potential of 1.68 V at 10 mA cm?2 and a potential gap of 0.88 V between the OER potential (at 10 mA cm?2) and the ORR half‐wave potential. The ORR and OER performance of CoNC‐CNF‐1000 have outperformed commercial Pt/C and most nonprecious‐metal catalysts reported to date. The remarkable ORR and OER catalytic performance can be mainly attributable to the unique 1D structure, such as higher graphitization degree beneficial for electronic mobility, hierarchical porosity facilitating the mass transport, and highly dispersed CoNxC active sites functionalized carbon framework. This strategy will shed light on the development of other MOF‐based carbon nanofibers for energy storage and electrochemical devices.  相似文献   

7.
Developing efficient and low‐cost defective carbon‐based catalysts for the oxygen reduction reaction (ORR) is essential to metal–air batteries and fuel cells. Active sites engineering toward these catalysts is highly desirable but challenging to realize boosted catalytic performance. Herein, a sandwich‐like confinement route to achieve the controllable regulation of active sites for carbon‐based catalysts is reported. In particular, three distinct catalysts including metal‐free N‐doped carbon (NC), single Co atoms dispersed NC (Co–N–C), and Co nanoparticles‐contained Co–N–C (Co/Co–N–C) are controllably realized and clearly identified by synchrotron radiation‐based X‐ray spectroscopy. Electrochemical measurements suggest that the Co/Co–N–C catalyst delivers optimized ORR performance due to the rich Co–Nx active sites and their synergistic effect with metallic Co nanoparticles. This work provides deep insight for rationally designing efficient ORR catalyst based on active sites engineering.  相似文献   

8.
Metal‐free electrocatalysts have been extensively developed to replace noble metal Pt and RuO2 catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in fuel cells or metal–air batteries. These electrocatalysts are usually deposited on a 3D conductive support (e.g., carbon paper or carbon cloth (CC)) to facilitate mass and electron transport. For practical applications, it is desirable to create in situ catalysts on the carbon fiber support to simplify the fabrication process for catalytic electrodes. In this study, the first example of in situ exfoliated, edge‐rich, oxygen‐functionalized graphene on the surface of carbon fibers using Ar plasma treatment is successfully prepared. Compared to pristine CC, the plasma‐etched carbon cloth (P‐CC) has a higher specific surface area and an increased number of active sites for OER and ORR. P‐CC also displays good intrinsic electron conductivity and excellent mass transport. Theoretical studies show that P‐CC has a low overpotential that is comparable to Pt‐based catalysts, as a result of both defects and oxygen doping. This study provides a simple and effective approach for producing highly active in situ catalysts on a carbon support for OER and ORR.  相似文献   

9.
The oxygen reduction reaction (ORR) plays an important role in the fields of energy storage and conversion technologies, including metal–air batteries and fuel cells. The development of nonprecious metal electrocatalysts with both high ORR activity and durability to replace the currently used costly Pt‐based catalyst is critical and still a major challenge. Herein, a facile and scalable method is reported to prepare ZIF‐8 with single ferrocene molecules trapped within its cavities (Fc@ZIF‐8), which is utilized as precursor to porous single‐atom Fe embedded nitrogen‐doped carbon (Fe–N–C) during high temperature pyrolysis. The catalyst shows a half‐wave potential (E1/2) of 0.904 V, 67 mV higher than commercial Pt/C catalyst (0.837 V), which is among the best compared with reported results for ORR. Significant electrochemical properties are attributed to the special configuration of Fc@ZIF‐8 transforming into a highly dispersed iron–nitrogen coordination moieties embedded carbon matrix.  相似文献   

10.
The oxygen reduction reaction (ORR) is a core reaction for electrochemical energy technologies such as fuel cells and metal–air batteries. ORR catalysts have been limited to platinum, which meets the requirements of high activity and durability. Over the last few decades, a variety of materials have been tested as non‐Pt catalysts, from metal–organic complex molecules to metal‐free catalysts. In particular, nitrogen‐doped graphitic carbon materials, including N‐doped graphene and N‐doped carbon nanotubes, have been extensively studied. However, due to the lack of understanding of the reaction mechanism and conflicting knowledge of the catalytic active sites, carbon‐based catalysts are still under the development stage of achieving a performance similar to Pt‐based catalysts. In addition to the catalytic viewpoint, designing mass transport pathways is required for O2. Recently, the importance of pyridinic N for the creation of active sites for ORR and the requirement of hydrophobicity near the active sites have been reported. Based on the increased knowledge in controlling ORR performances, bottom‐up preparation of N‐doped carbon catalysts, using N‐containing conjugative molecules as the assemblies of the catalysts, is promising. Here, the recent understanding of the active sites and the mechanism of ORRs on N‐doped carbon catalysts are reviewed.  相似文献   

11.
Highly active and durable air cathodes to catalyze both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are urgently required for rechargeable metal–air batteries. In this work, an efficient bifunctional oxygen catalyst comprising hollow Co3O4 nanospheres embedded in nitrogen‐doped carbon nanowall arrays on flexible carbon cloth (NC‐Co3O4/CC) is reported. The hierarchical structure is facilely derived from a metal–organic framework precursor. A carbon onion coating constrains the Kirkendall effect to promote the conversion of the Co nanoparticles into irregular hollow oxide nanospheres with a fine scale nanograin structure, which enables promising catalytic properties toward both OER and ORR. The integrated NC‐Co3O4/CC can be used as an additive‐free air cathode for flexible all‐solid‐state zinc–air batteries, which present high open circuit potential (1.44 V), high capacity (387.2 mAh g?1, based on the total mass of Zn and catalysts), excellent cycling stability and mechanical flexibility, significantly outperforming Pt‐ and Ir‐based zinc–air batteries.  相似文献   

12.
Synergistic improvements in the electrical conductivity and catalytic activity for the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) are of paramount importance for rechargeable metal–air batteries. In this study, one‐nanometer‐scale ultrathin cobalt oxide (CoOx) layers are fabricated on a conducting substrate (i.e., a metallic Co/N‐doped graphene substrate) to achieve superior bifunctional activity in both the ORR and OER and ultrahigh output power for flexible Zn–air batteries. Specifically, at the atomic scale, the ultrathin CoOx layers effectively accelerate electron conduction and provide abundant active sites. X‐ray absorption spectroscopy reveals that the metallic Co/N‐doped graphene substrate contributes to electron transfer toward the ultrathin CoOx layer, which is beneficial for the electrocatalytic process. The as‐obtained electrocatalyst exhibits ultrahigh electrochemical activity with a positive half‐wave potential of 0.896 V for ORR and a low overpotential of 370 mV at 10 mA cm?2 for OER. The flexible Zn–air battery built with this catalyst exhibits an ultrahigh specific power of 300 W gcat ?1, which is essential for portable devices. This work provides a new design pathway for electrocatalysts for high‐performance rechargeable metal–air battery systems.  相似文献   

13.
Rechargeable flexible solid Zn‐air battery, with a high theoretical energy density of 1086 Wh kg?1, is among the most attractive energy technologies for future flexible and wearable electronics; nevertheless, the practical application is greatly hindered by the sluggish oxygen reduction reaction/oxygen evolution reaction (ORR/OER) kinetics on the air electrode. Precious metal‐free functionalized carbon materials are widely demonstrated as the most promising candidates, while it still lacks effective synthetic methodology to controllably synthesize carbocatalysts with targeted active sites. This work demonstrates the direct utilization of the intrinsic structural defects in nanocarbon to generate atomically dispersed Co–Nx–C active sites via defect engineering. As‐fabricated Co/N/O tri‐doped graphene catalysts with highly active sites and hierarchical porous scaffolds exhibit superior ORR/OER bifunctional activities and impressive applications in rechargeable Zn‐air batteries. Specifically, when integrated into a rechargeable and flexible solid Zn‐air battery, a high open‐circuit voltage of 1.44 V, a stable discharge voltage of 1.19 V, and a high energy efficiency of 63% at 1.0 mA cm?2 are achieved even under bending. The defect engineering strategy provides a new concept and effective methodology for the full utilization of nanocarbon materials with various structural features and further development of advanced energy materials.  相似文献   

14.
Obtaining bifunctional electrocatalysts with high activity for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is a main hurdle in the application of rechargeable metal‐air batteries. Earth‐abundant 3d transition metal‐based catalysts have been developed for the OER and ORR; however, most of these are based on oxides, whose insulating nature strongly restricts their catalytic performance. This study describes a metallic Ni‐Fe nitride/nitrogen‐doped graphene hybrid in which 2D Ni‐Fe nitride nanoplates are strongly coupled with the graphene support. Electronic structure of the Ni‐Fe nitride is changed by hybridizing with the nitrogen‐doped graphene. The unique heterostructure of this hybrid catalyst results in very high OER activity with the lowest onset overpotential (150 mV) reported, and good ORR activity comparable to that for commercial Pt/C. The high activity and durability of this bifunctional catalyst are also confirmed in rechargeable zinc‐air batteries that are stable for 180 cycles with an overall overpotential of only 0.77 V at 10 mA?2.  相似文献   

15.
It is urgent to develop new kinds of low‐cost and high‐performance nonprecious metal (NPM) catalysts as alternatives to Pt‐based catalysts for oxygen reduction reaction (ORR) in fuel cells and metal–air batteries, which have been proved to be efficient to meet the challenge of increase of global energy demand and CO2 emissions. Here, an economical and sustainable method is developed for the synthesis of Fe, N codoped carbon nanofibers (Fe–N/CNFs) aerogels as efficient NPM catalysts for ORR via a mild template‐directed hydrothermal carbonization (HTC) process, where cost‐effective biomass‐derived d (+)‐glucosamine hydrochloride and ferrous gluconate are used as precursors and recyclable ultrathin tellurium nanowires are used as templates. The prepared Fe/N‐CNFs catalysts display outstanding ORR activity, i.e., onset potential of 0.88 V and half‐wave potential of 0.78 V versus reversible hydrogen electrode in an alkaline medium, which is highly comparable to that of commercial Pt/C (20 wt% Pt) catalyst. Furthermore, the Fe/N‐CNFs catalysts exhibit superior long‐term stability and better tolerance to the methanol crossover effect than the Pt/C catalyst in both alkaline and acidic electrolytes. This work suggests the great promise of developing new families of NPM ORR catalysts by the economical and sustainable HTC process.  相似文献   

16.
Electrocatalysts for oxygen‐reduction and oxygen‐evolution reactions (ORR and OER) are crucial for metal–air batteries, where more costly Pt‐ and Ir/Ru‐based materials are the benchmark catalysts for ORR and OER, respectively. Herein, for the first time Ni is combined with MnO species, and a 3D porous graphene aerogel‐supported Ni/MnO (Ni–MnO/rGO aerogel) bifunctional catalyst is prepared via a facile and scalable hydrogel route. The synthetic strategy depends on the formation of a graphene oxide (GO) crosslinked poly(vinyl alcohol) hydrogel that allows for the efficient capture of highly active Ni/MnO particles after pyrolysis. Remarkably, the resulting Ni–MnO/rGO aerogels exhibit superior bifunctional catalytic performance for both ORR and OER in an alkaline electrolyte, which can compete with the previously reported bifunctional electrocatalysts. The MnO mainly contributes to the high activity for the ORR, while metallic Ni is responsible for the excellent OER activity. Moreover, such bifunctional catalyst can endow the homemade Zn–air battery with better power density, specific capacity, and cycling stability than mixed Pt/C + RuO2 catalysts, demonstrating its potential feasibility in practical application of rechargeable metal–air batteries.  相似文献   

17.
In recent years, significant progress has been achieved in the development of platinum group metal‐free (PGM‐free) oxygen reduction reaction (ORR) catalysts for proton exchange membrane (PEM) fuel cells. At the same time the limited durability of these catalysts remains a great challenge that needs to be addressed. This mini‐review summarizes the recent progress in understanding the main causes of instability of PGM‐free ORR catalysts in acidic environments, focusing on transition metal/nitrogen codoped systems (M‐N‐C catalysts, M: Fe, Co, Mn), particularly MNx moiety active sites. Of several possible degradation mechanisms, demetalation and carbon oxidation are found to be the most likely reasons for M‐N‐C catalysts/cathodes degradation.  相似文献   

18.
Selectively exposing active surfaces and judiciously tuning the near‐surface composition of electrode materials represent two prominent means of promoting electrocatalytic performance. Here, a new class of Pt3Fe zigzag‐like nanowires (Pt‐skin Pt3Fe z‐NWs) with stable high‐index facets (HIFs) and nanosegregated Pt‐skin structure is reported, which are capable of substantially boosting electrocatalysis in fuel cells. These unique structural features endow the Pt‐skin Pt3Fe z‐NWs with a mass activity of 2.11 A mg?1 and a specifc activity of 4.34 mA cm?2 for the oxygen reduction reaction (ORR) at 0.9 V versus reversible hydrogen electrode, which are the highest in all reported PtFe‐based ORR catalysts. Density function theory calculations reveal a combination of exposed HIFs and formation of Pt‐skin structure, leading to an optimal oxygen adsorption energy due to the ligand and strain effects, which is responsible for the much enhanced ORR activities. In contrast to previously reported HIFs‐based catalysts, the Pt‐skin Pt3Fe z‐NWs maintain ultrahigh durability with little activity decay and negligible structure transformation after 50 000 potential cycles. Overcoming a key technical barrier in electrocatalysis, this work successfully extends the nanosegregated Pt‐skin structure to nanocatalysts with HIFs, heralding the exciting prospects of high‐effcient Pt‐based catalysts in fuel cells.  相似文献   

19.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious‐metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double‐shelled hybrid nanocages with outer shells of Co‐N‐doped graphitic carbon (Co‐NGC) and inner shells of N‐doped microporous carbon (NC) by templating against core–shell metal–organic frameworks. The double‐shelled NC@Co‐NGC nanocages well integrate the high activity of Co‐NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn–air batteries. First‐principles calculations reveal that the high catalytic activities of Co‐NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow‐site C atoms with respect to the Co lattice in the Co‐NGC structure is a vital rate‐determining step to achieve excellent bifunctional electrocatalytic activity.  相似文献   

20.
Metal–organic frameworks (MOFs) and MOF‐derived materials have recently attracted considerable interest as alternatives to noble‐metal electrocatalysts. Herein, the rational design and synthesis of a new class of Co@N‐C materials (C‐MOF‐C2‐T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported. The newly developed C‐MOF‐C2‐900 with a unique 3D hierarchical rodlike structure, consisting of homogeneously distributed cobalt nanoparticles encapsulated by partially graphitized N‐doped carbon rings along the rod length, exhibits higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions (ORR and OER) than that of commercial Pt/C and RuO2, respectively. Primary Zn–air batteries based on C‐MOF‐900 for the oxygen reduction reaction (ORR) operated at a discharge potential of 1.30 V with a specific capacity of 741 mA h gZn–1 under 10 mA cm–2. Rechargeable Zn–air batteries based on C‐MOF‐C2‐900 as an ORR and OER bifunctional catalyst exhibit initial charge and discharge potentials at 1.81 and 1.28 V (2 mA cm–2), along with an excellent cycling stability with no increase in polarization even after 120 h – outperform their counterparts based on noble‐metal‐based air electrodes. The resultant rechargeable Zn–air batteries are used to efficiently power electrochemical water‐splitting systems, demonstrating promising potential as integrated green energy systems for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号