首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A smart release system responsive to near‐infrared (NIR) light is developed for intracellular drug delivery. The concept is demonstrated by coencapsulating doxorubicin (DOX) (an anticancer drug) and IR780 iodide (IR780) (an NIR‐absorbing dye) into nanoparticles made of a eutectic mixture of naturally occurring fatty acids. The eutectic mixture has a well‐defined melting point at 39 °C, and can be used as a biocompatible phase‐change material for NIR‐triggered drug release. The resultant nanoparticles exhibit prominent photothermal effect and quick drug release in response to NIR irradiation. Fluorescence microscopy analysis indicates that the DOX trapped in the nanoparticles can be efficiently released into the cytosol under NIR irradiation, resulting in enhanced anticancer activity. A new platform is thus offered for designing effective intracellular drug‐release systems, holding great promise for future cancer therapy.  相似文献   

2.
Biomimetic camouflage, i.e., using natural cell membranes for drug delivery, has demonstrated advantages over synthetic materials in both pharmacokinetics and biocompatibility, and so represents a promising solution for the development of safe nanomedicine. However, only limited efforts have been dedicated to engineering such camouflage to endow it with optimized or additional properties, in particular properties critical to a “smart” drug delivery system, such as stimuli‐responsive drug release. A pH‐responsive biomimetic “platesome” for specific drug delivery to tumors and tumor‐triggered drug release is described. This platesome nanovehicle is constructed by merging platelet membranes with functionalized synthetic liposomes and exhibits enhanced tumor affinity, due to its platelet membrane–based camouflage, and selectively releases its cargo in response to the acidic microenvironment of lysosomal compartments. In mouse cancer models, it shows significantly better antitumor efficacy than nanoformulations based on a platesome without pH responsiveness or those based on traditional pH‐sensitive liposomes. A convenient way to incorporate stimuli‐responsive features into biomimetic nanoparticles is described, demonstrating the potential of engineered cell membranes as biomimetic camouflages for a new generation of biocompatible and efficient nanocarriers.  相似文献   

3.
A novel pH‐ and redox‐ dual‐responsive tumor‐triggered targeting mesoporous silica nanoparticle (TTTMSN) is designed as a drug carrier. The peptide RGDFFFFC is anchored on the surface of mesoporous silica nanoparticles via disulfide bonds, which are redox‐responsive, as a gatekeeper as well as a tumor‐targeting ligand. PEGylated technology is employed to protect the anchored peptide ligands. The peptide and monomethoxypolyethylene glycol (MPEG) with benzoic‐imine bond, which is pH‐sensitive, are then connected via “click” chemistry to obtain TTTMSN. In vitro cell research demonstrates that the targeting property of TTTMSN is switched off in normal tissues with neutral pH condition, and switched on in tumor tissues with acidic pH condition after removing the MPEG segment by hydrolysis of benzoic‐imine bond under acidic conditions. After deshielding of the MPEG segment, the drug‐loaded nanoparticles are easily taken up by tumor cells due to the exposed peptide targeting ligand, and subsequently the redox signal glutathione in tumor cells induces rapid drug release intracellularly after the cleavage of disulfide bond. This novel intelligent TTTMSN drug delivery system has great potential for cancer therapy.  相似文献   

4.
Stimuli‐responsive drug‐delivery systems constitute an appealing approach to direct and restrict drug release spatiotemporally at the specific site of interest. However, it is difficult for most systems to affect every cancer cell in a tumor tissue due to the presence of the natural tumor barrier, leading to potential tumor recurrence. Here, core–shell magnetoresponsive virus‐mimetic nanocapsules (VNs), which can infect cancer cells sequentially and double as a magnetothermal agent fabricated through anchoring iron oxide nanoparticles in a single‐component protein (lactoferrin) shell, are reported. With large payload of hydrophilic/hydrophobic anticancer cargos, doxorubicin and palictaxel, VNs can simultaneously give a rapid drug release and intense heat while applying an external high‐frequency magnetic field (HFMF). Furthermore, after being liberated from dead cells by HFMF manipulation, the constructive VNs can sequentially infect neighboring cancer cells and deliver sufficient therapeutic agents to next targeted sites. With high efficiency for sequential cell infections, VNs have successfully eliminated subcutaneous tumor after a combinatorial treatment. These results demonstrate that the VNs could be used for locally targeted, on‐demand, magnetoresponsive chemotherapy/hyperthermia, combined with repeated cell infections for tumor therapy and other therapeutic applications.  相似文献   

5.
A novel light‐operated vehicle for targeted intracellular drug delivery is constructed using photosensitizer‐incorporated G‐quadruplex DNA‐capped mesoporous silica nanoparticles. Upon light irradiation, the photosensitizer generates ROS, causing the DNA capping to be cleaved and allowing cargo to be released. Importantly, this platform makes it possible to develop a drug‐carrier system for the synergistic combination of chemotherapy and PDT for cancer treatment with spatial/temporal control. Furthermore, the introducing of targeting ligands further improves tumor targeting efficiency. The excellent biocompatibility, cell‐specific intracellular drug delivery, and cellular uptake properties set up the basis for future biomedical application that require in vivo controlled, targeted drug delivery.  相似文献   

6.
Engineering of smart photoactivated nanomaterials for targeted drug delivery systems (DDS) has recently attracted considerable research interest as light enables precise and accurate controlled release of drug molecules in specific diseased cells and/or tissues in a highly spatial and temporal manner. In general, the development of appropriate light‐triggered DDS relies on processes of photolysis, photoisomerization, photo‐cross‐linking/un‐cross‐linking, and photoreduction, which are normally sensitive to ultraviolet (UV) or visible (Vis) light irradiation. Considering the issues of poor tissue penetration and high phototoxicity of these high‐energy photons of UV/Vis light, recently nanocarriers have been developed based on light‐response to low‐energy photon irradiation, in particular for the light wavelengths located in the near infrared (NIR) range. NIR light‐triggered drug release systems are normally achieved by using two‐photon absorption and photon upconversion processes. Herein, recent advances of light‐responsive nanoplatforms for controlled drug release are reviewed, covering the mechanism of light responsive small molecules and polymers, UV and Vis light responsive nanocarriers, and NIR light responsive nanocarriers. NIR‐light triggered drug delivery by two‐photon excitation and upconversion luminescence strategies is also included. In addition, the challenges and future perspectives for the development of light triggered DDS are highlighted.  相似文献   

7.
Smart nanoparticles are increasingly important in a variety of applications such as cancer therapy. However, it is still a major challenge to develop light‐responsive nanoparticles that can maximize the potency of synergistic thermo‐chemotherapy under light irradiation. Here, spatially confined cyanine‐anchored silica nanochannels loaded with chemotherapeutic doxorubicin (CS‐DOX‐NCs) for light‐driven synergistic cancer therapy are introduced. CS‐DOX‐NCs possess a J‐type aggregation conformation of cyanine dye within the nanochannels and encapsulate doxorubicin through the π–π interaction with cyanine dye. Under near‐infrared light irradiation, CS‐DOX‐NCs produce the enhanced photothermal conversion efficiency through the maximized nonradiative transition of J‐type Cypate aggregates, trigger the light‐driven drug release through the destabilization of temperature‐sensitive π–π interaction, and generate the effective intracellular translocation of doxorubicin from the lysosomes to cytoplasma through reactive oxygen species‐mediated lysosomal disruption, thereby causing the potent in vivo hyperthermia and intracellular trafficking of drug into cytoplasma at tumors. Moreover, CS‐DOX‐NCs possess good resistance to photobleaching and preferable tumor accumulation, facilitating severe photoinduced cell damage, and subsequent synergy between photothermal and chemotherapeutic therapy with tumor ablation. These findings provide new insights of light‐driven nanoparticles for synergistic cancer therapy.  相似文献   

8.
Responsive nanomaterials have emerged as promising candidates as drug delivery vehicles in order to address biomedical diseases such as cancer. In this work, polymer‐based responsive nanoparticles prepared by a supramolecular approach are loaded with doxorubicin (DOX) for the cancer therapy. The nanoparticles contain disulfide bonds within the polymer network, allowing the release of the DOX payload in a reducing environment within the endoplasm of cancer cells. In addition, the loaded drug can also be released under acidic environment. In vitro anticancer studies using redox and pH dual responsive nanoparticles show excellent performance in inducing cell death and apoptosis. Zebrafish larvae treated with DOX‐loaded nanoparticles exhibit an improved viability as compared with the cases treated with free DOX by the end of a 3 d treatment. Confocal imaging is utilized to provide the daily assessment of tumor size on zebrafish larva models treated with DOX‐loaded nanoparticles, presenting sustainable reduction of tumor. This work demonstrates the development of functional nanoparticles with dual responsive properties for both in vitro and in vivo drug delivery in the cancer therapy.  相似文献   

9.
Tumor‐responsive nanocarriers are highly valuable and demanded for smart drug delivery particularly in the field of photodynamic therapy (PDT), where a quick release of photosensitizers in tumors is preferred. Herein, it is demonstrated that protein‐based nanospheres, prepared by the electrostatic assembly of proteins and polypeptides with intermolecular disulfide cross‐linking and surface polyethylene glycol coupling, can be used as versatile tumor‐responsive drug delivery vehicles for effective PDT. These nanospheres are capable of encapsulation of various photosensitizers including Chlorin e6 (Ce6), protoporphyrin IX, and verteporfin. The Chlorin e6‐encapsulated nanospheres (Ce6‐Ns) are responsive to changes in pH, redox potential, and proteinase concentration, resulting in multitriggered rapid release of Ce6 in an environment mimicking tumor tissues. In vivo fluorescence imaging results indicate that Ce6‐Ns selectively accumulate near tumors and the quick release of Ce6 from Ce6‐Ns can be triggered by tumors. In tumors the fluorescence of released Ce6 from Ce6‐Ns is observed at 0.5 h postinjection, while in normal tissues the fluorescence appeared at 12 h postinjection. Tumor ablation is demonstrated by in vivo PDT using Ce6‐Ns and the biocompatibility of Ce6‐Ns is evident from the histopathology imaging, confirming the enhanced in vivo PDT efficacy and the biocompatibility of the assembled drug delivery vehicles.  相似文献   

10.
High delivery efficiency, prolonged drug release, and low systemic toxicity are effective weapons for drug delivery systems to win the battle against metastatic breast cancer. Herein, it is shown that Spirulina platensis (S. platensis) can be used as natural carriers to construct a drug‐loaded system for targeted delivery and fluorescence imaging‐guided chemotherapy on lung metastasis of breast cancer. The chemotherapeutic doxorubicin (DOX) is loaded into S. platensis (SP) via only one facile step to fabricate the DOX‐loaded SP (SP@DOX), which exhibits ultrahigh drug loading efficiency and PH‐responsive drug sustained release. The rich chlorophyll endows SP@DOX excellent fluorescence imaging capability for noninvasive tracking and real‐time monitoring in vivo. Moreover, the micrometer‐sized and spiral‐shaped SP carriers enable the as‐prepared SP@DOX to passively target the lungs and result in a significantly enhanced therapeutic efficacy on lung metastasis of 4T1 breast cancer. Finally, the undelivered carriers can be biodegraded through renal clearance without notable toxicity. The SP@DOX described here presents a novel biohybrid strategy for targeted drug delivery and effective treatment on cancer metastasis.  相似文献   

11.
Although tremendous efforts have been made on targeted drug delivery systems, current therapy outcomes still suffer from low circulating time and limited targeting efficiency. The integration of cell‐mediated drug delivery and theranostic nanomedicine can potentially improve cancer management in both therapeutic and diagnostic applications. By taking advantage of innate immune cell's ability to target tumor cells, the authors develop a novel drug delivery system by using macrophages as both nanoparticle (NP) carriers and navigators to achieve cancer‐specific drug delivery. Theranostic NPs are fabricated from a unique polymer, biodegradable photoluminescent poly (lactic acid) (BPLP‐PLA), which possesses strong fluorescence, biodegradability, and cytocompatibility. In order to minimize the toxicity of cancer drugs to immune cells and other healthy cells, an anti‐BRAF V600E mutant melanoma specific drug (PLX4032) is loaded into BPLP‐PLA nanoparticles. Muramyl tripeptide is also conjugated onto the nanoparticles to improve the nanoparticle loading efficiency. The resulting nanoparticles are internalized within macrophages, which are tracked via the intrinsic fluorescence of BPLP‐PLA. Macrophages carrying nanoparticles deliver drugs to melanoma cells via cell–cell binding. Pharmacological studies also indicate that the PLX4032 loaded nanoparticles effectively kill melanoma cells. The “self‐powered” immune cell‐mediated drug delivery system demonstrates a potentially significant advancement in targeted theranostic cancer nanotechnologies.  相似文献   

12.
The application of nanotechnology in the field of drug delivery has attracted much attention in the latest decades. Recent breakthroughs on the morphology control and surface functionalization of inorganic‐based delivery vehicles, such as mesoporous silica nanoparticles (MSNs), have brought new possibilities to this burgeoning area of research. The ability to functionalize the surface of mesoporous‐silica‐based nanocarriers with stimuli‐responsive groups, nanoparticles, polymers, and proteins that work as caps and gatekeepers for controlled release of various cargos is just one of the exciting results reported in the literature that highlights MSNs as a promising platform for various biotechnological and biomedical applications. This review focuses on the most recent progresses in the application of MSNs for intracellular drug delivery. The latest research on the pathways of entry into live mammalian and plant cells together with intracellular trafficking are described. One of the main areas of interest in this field is the development of site‐specific drug delivery vehicles; the contribution of MSNs toward this topic is also summarized. In addition, the current research progress on the biocompatibility of this material in vitro and in vivo is discussed. Finally, the latest breakthroughs for intracellular controlled drug release using stimuli‐responsive mesoporous‐silica‐based systems are described.  相似文献   

13.
Tuberculosis is a major global health problem for which improved therapeutics are needed to shorten the course of treatment and combat emergence of drug resistance. Mycobacterium tuberculosis, the etiologic agent of tuberculosis, is an intracellular pathogen of mononuclear phagocytes. As such, it is an ideal pathogen for nanotherapeutics because macrophages avidly ingest nanoparticles even without specific targeting molecules. Hence, a nanoparticle drug delivery system has the potential to target and deliver high concentrations of drug directly into M. tuberculosis‐infected cells—greatly enhancing efficacy while avoiding off‐target toxicities. Stimulus‐responsive mesoporous silica nanoparticles of two different sizes, 100 and 50 nm, are developed as carriers for the major anti‐tuberculosis drug isoniazid in a prodrug configuration. The drug is captured by the aldehyde‐functionalized nanoparticle via hydrazone bond formation and coated with poly(ethylene imine)–poly(ethylene glycol) (PEI–PEG). The drug is released from the nanoparticles in response to acidic pH at levels that naturally occur within acidified endolysosomes. It is demonstrated that isoniazid‐loaded PEI–PEG‐coated nanoparticles are avidly ingested by M. tuberculosis‐infected human macrophages and kill the intracellular bacteria in a dose‐dependent manner. It is further demonstrated in a mouse model of pulmonary tuberculosis that the nanoparticles are well tolerated and much more efficacious than an equivalent amount of free drug.  相似文献   

14.
Controlled drug release systems can enhance the safety and availability but avoid the side effect of drugs. Herein, the concept of DNA complementary base pairing rules in biology is used to design and prepare a photothermal‐triggered drug release system. Adenine (A) modified polydopamine nanoparticles (A‐PDA, photothermal reagent) can effectively bind with thymine (T) modified Zinc phthalocyanine (T‐ZnPc, photosensitizer) forming A‐PDA = T‐ZnPc (PATP) complex based on A = T complementary base pairing rules. Similar to DNA, whose base pairing in double strands will break by heating, T‐ZnPc can be effectively released from A‐PDA after near infrared irradiation–triggered light‐thermal conversion to obtain satisfactory photodynamic–photothermal synergistic tumor treatment. In addition, PDA can carry abundant Gd3+ to provide magnetic resonance imaging guided delivery and theranostic function.  相似文献   

15.
Multifunctional nanoparticles are synthesized for both pH‐triggered drug release and imaging with radioluminescence, upconversion luminescent, and magnetic resonance imaging (MRI). The particles have a yolk‐in‐shell morphology, with a radioluminescent core, an upconverting shell, and a hollow region between the core and shell for loading drugs. They are synthesized by controlled encapsulation of a radioluminescent nanophosphor yolk in a silica shell, partial etching of the yolk in acid, and encapsulation of the silica with an upconverting luminescent shell. Metroxantrone, a chemotherapy drug, was loaded into the hollow space between X‐ray phosphor yolk and up‐conversion phosphor shell through pores in the shell. To encapsulate the drug and control the release rate, the nanoparticles are coated with pH‐responsive biocompatible polyelectrolyte layers of charged hyaluronic acid sodium salt and chitosan. The nanophosphors display bright luminescence under X‐ray, blue light (480 nm), and near infrared light (980 nm). They also served as T1 and T2 MRI contrast agents with relaxivities of 3.5 mM?1 s?1 (r1) and 64 mM?1s?1 (r2). These multifunctional nanocapsules have applications in controlled drug delivery and multimodal imaging.  相似文献   

16.
17.
Nanodiamonds are rapidly emerging as promising carriers for next‐generation therapeutics and drug delivery. However, developing future nanoscale devices and arrays that harness these nanoparticles will require unrealized spatial control. Furthermore, single‐cell in vitro transfection methods lack an instrument that simultaneously offers the advantages of having nanoscale dimensions and control and continuous delivery via microfluidic components. To address this, two modes of controlled delivery of functionalized diamond nanoparticles are demonstrated using a broadly applicable nanofountain probe, a tool for direct‐write nanopatterning with sub‐100‐nm resolution and direct in vitro single‐cell injection. This study demonstrates the versatility of the nanofountain probe as a tool for high‐fidelity delivery of functionalized nanodiamonds and other agents in nanomanufacturing and single‐cell biological studies. These initial demonstrations of controlled delivery open the door to future studies examining the nanofountain probe's potential in delivering specific doses of DNA, viruses, and other therapeutically relevant biomolecules.  相似文献   

18.
Nanotheranostics, combining diagnostics and therapy, has the potential to revolutionize treatment of neurological disorders. But one of the major obstacles for treating central nervous system diseases is the blood–brain barrier (BBB) preventing systemic delivery of drugs and optical probes into the brain. To overcome these limitations, nanodiamonds (NDs) are investigated in this study as they are a powerful sensing and imaging platform for various biological applications and possess outstanding stable far‐red fluorescence, do not photobleach, and are highly biocompatible. Herein, fluorescent NDs encapsulated by a customized human serum albumin–based biopolymer (polyethylene glycol) coating (dcHSA‐PEG) are taken up by target brain cells. In vitro BBB models reveal transcytosis and an additional direct cell–cell transport via tunneling nanotubes. Systemic application of dcHSA‐NDs confirms their ability to cross the BBB in a mouse model. Tracking of dcHSA‐NDs is possible at the single cell level and reveals their uptake into neurons and astrocytes in vivo. This study shows for the first time systemic NDs brain delivery and suggests transport mechanisms across the BBB and direct cell–cell transport. Fluorescent NDs are envisioned as traceable transporters for in vivo brain imaging, sensing, and drug delivery.  相似文献   

19.
A majority of the photo‐responsive drug‐delivery systems that are currently being studied require a complicated synthesis method. Here, we prepare a near‐infrared responsive, photothermally controllable, drug‐delivery carrier by a simple mixing and extraction process without the incorporation of toxic chemicals. A blend of doxorubicin (DOX), an anticancer drug, and a phase‐change material (PCM) are loaded onto the mesoporous structure of silica‐coated graphene oxide (GO@MS) to form a waffle‐like structure, which is confirmed by various physicochemical analyses. The cytotoxicity of DOX/PCM‐loaded GO@MS (DOX/PCM‐GO@MS) against HeLa cells is 50 times higher than that of free DOX, and this improved activity can be attributed to the photothermal effectiveness of GO@MS. Additionally, the cytotoxicity and uptake mechanism of the PCM‐based material are analyzed by flow cytometry. Taken together, our results suggest an enormous potential for spatio‐temporal control in photothermally responsive drug‐delivery systems.  相似文献   

20.
Light‐responsive hydrogel particles with multi‐compartmental structure are useful for applications in microreactors, drug delivery and tissue engineering because of their remotely‐triggerable releasing ability and combinational functionalities. The current methods of synthesizing multi‐compartmental hydrogel particles typically involve multi‐step interrupted gelation of polysaccharides or complicated microfluidic procedures with limited throughput. In this study, a two‐step sequential gelation process is developed to produce agarose/alginate double network multi‐compartmental hydrogel particles using droplets assemblies induced by superhydrophobic surface as templates. The agarose/alginate double network multi‐compartmental hydrogel particles can be formed with diverse hierarchical structures showing combinational functionalities. The synthesized hydrogel particles, when loaded with polypyrrole (PPy) nanoparticles that act as photothermal nanotransducers, are demonstrated to function as near‐infrared (NIR) light triggerable and deformation‐free hydrogel materials. Periodic NIR laser switching is applied to stimulate these hydrogel particles, and pulsatile release profiles are collected. Compared with massive reagents released from single‐compartmental hydrogel particles, more regulated release profiles of the multi‐compartmental hydrogel particles are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号