首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly reduced graphene oxide (rGO) films are fabricated by combining reduction with smeared hydrazine at low temperature (e.g., 100 °C) and the multilayer stacking technique. The prepared rGO film, which has a lower sheet resistance (≈160–500 Ω sq−1) and higher conductivity (26 S cm−1) as compared to other rGO films obtained by commonly used chemical reduction methods, is fully characterized. The effective reduction can be attributed to the large “effective reduction depth” in the GO films (1.46 µm) and the high C1s/O1s ratio (8.04). By using the above approach, rGO films with a tunable thickness and sheet resistance are achieved. The obtained rGO films are used as electrodes in polymer memory devices, in a configuration of rGO/poly(3‐hexylthiophene) (P3HT):phenyl‐C61‐butyric acid methyl ester (PCBM)/Al, which exhibit an excellent write‐once‐read‐many‐times effect and a high ON/OFF current ratio of 106.  相似文献   

2.
In this paper, a novel “grape string” carbon black/multi-wall carbon nanotubes (CB/MWCNT) structure was obtained by electro-static assembly method to enhance the resistance stability of the carbon material filled silicone rubber (SR). Carbon black (CB) and multi-wall carbon nanotubes (MWCNT) were surface modified by sulfonic dodecyl benzene sodium and cetyltrimethylammonium bromide to provide negatively charge and positively charge, respectively. Electric conductive sheet of CB/MWCNT/SR composite was obtained by mixing and vulcanizing. The assembly effect and dispersion state of the composites were analyzed by transmission electron microscopy and scanning electron microscopy. The electrical conductivity and dynamic pressure-resistance characteristic of CB/MWCNT/SR with different doping ratio and dosage were tested. The results show that the proper weight ratio 3:2 of CB:MWCNT for electrostatic assembly can cause the stable “grape string” nano-structure. The conductivity and pressure-resistance characteristic are superior when the volume fraction of “grape string” nano-composites reaches 22%, which will provided with less filler fraction and better stress sensitivity, compared with single component carbon black filler.  相似文献   

3.
We show both gas pressure and species sensing capabilities based on the electrothermal effect of a multiwalled carbon nanotube (MWCNT). Upon exposure to gaseous environments, the resistance of a heated MWCNT is found to change following the conductive heat-transfer variances of gas molecules. To realize this mechanism, a suspended MWCNT is constructed by synthesis and assembly in localized chemical vapor deposition that is accomplished within seconds via real-time electrical feedback control. Vacuum pressure sensitivity and gas species differentiability are observed and analyzed. Such MWCNT electrothermal sensors are compact, fast and reversible in responses, and fully integratable with microelectronics.  相似文献   

4.
An air‐stable transparent conductive film with “quasi‐freestanding” graphene supported on horizontal single walled carbon nanotubes (SWCNTs) arrays is fabricated. The sheet resistance of graphene films stacked via layer‐by‐layer transfer (LBL) on quartz, and modified by 1‐Pyrenebutyric acid N‐hydroxysuccinimide ester (PBASE), is reduced from 273 Ω/sq to about 76 Ω/sq. The electrical properties are stable to heat treatment (up to 200 ºC) and ambient exposure. Organic light‐emitting diodes (OLEDs) constructed of this carbon anode (T ≈ 89.13% at 550 nm) exhibit ≈88% power efficiency of OLEDs fabricated on an ITO anode (low turn on voltage ≈3.1 eV, high luminance up to ≈29 490 cd/m2, current efficiency ≈14.7 cd/A). Most importantly, the entire graphene‐on‐SWCNT hybrid electrodes can be transferred onto plastic (PET) forming a highly‐flexible OLED device, which continues to function without degradation in performance at bending angles >60°.  相似文献   

5.
Understanding of the effect of the multi-walled carbon nanotube (MWCNT) dispersion process on physical properties of MWCNT film is crucial in process optimization of MWCNT film-based products. In the present work, the electrical conduction property of MWCNT films according to various conditions in MWCNT dispersion is investigated. Spectroscopic analysis of dispersed MWCNTs show that the electrical resistance of the MWCNT conductive film is affected by an increase in the electrical contacts between adjacent CNTs due to CNT debundling and physical damage caused by ultrasonic processing. Based on the two conflicting parameters, dispersion guidelines for highly conductive MWCNT film are presented.  相似文献   

6.
In the research of advanced materials based on nanoscience and nanotechnology, it is often desirable to measure nanoscale local electrical conductivity at a designated position of a given sample. For this purpose, multiple‐probe scanning probe microscopes (MP‐SPMs), in which two, three or four scanning tunneling microscope (STM) or atomic force microscope (AFM) probes are operated independently, have been developed. Each probe in an MP‐SPM is used not only for observing high‐resolution STM or AFM images but also for forming an electrical contact enabling nanoscale local electrical conductivity measurement. The world's first double‐probe STM (DP‐STM) developed by the authors, which was subsequently modified to a triple‐probe STM (TP‐STM), has been used to measure the conductivities of one‐dimensional metal nanowires and carbon nanotubes and also two‐dimensional molecular films. A quadruple‐probe STM (QP‐STM) has also been developed and used to measure the conductivity of two‐dimensional molecular films without the ambiguity of contact resistance between the probe and sample. Moreover, a quadruple‐probe AFM (QP‐AFM) with four conductive tuning‐fork‐type self‐detection force sensing probes has been developed to measure the conductivity of a nanostructure on an insulating substrate. A general‐purpose computer software to control four probes at the same time has also been developed and used in the operation of the QP‐AFM. These developments and applications of MP‐SPMs are reviewed in this paper.  相似文献   

7.
The slip‐rolling resistances of hard and stiff thin films under high Hertzian contact pressures can be improved by optimizing the “coating/substrate systems”. It is known from former investigations that the so‐called “egg‐shell” effect is no general hindrance for high slip‐rolling resistance of thin hard coatings. The coating stability depends more on specific deposition process and coating/substrate interface design. In this article it is experimentally shown, that pure amorphous carbon thin films with hardness between 15 and 63 GPa can be slip‐rolling resistant several million load cycles under a maximum Hertzian contact pressures of up to 3.0 GPa. Whereas all coatings were stable up to 10 million load cycles in paraffin oil at room temperature, reduced coating lifetime was found in SAE 0W‐30 engine oil at 120°C. It was shown how the coating hardness and the initial coating surface roughness influence the running‐in process and coating lifetime. No clear correlation between coating hardness and coating lifetime could be observed, but friction coefficients seem to be reduced with higher coating hardness. Very low friction down to ?0.03 in unmodified engine oils was found for the hardest ta‐C film.  相似文献   

8.
Graphene‐based fibers (GBFs) are attractive for next‐generation wearable electronics due to their potentially high mechanical strength, superior flexibility, and excellent electrical and thermal conductivity. Many efforts have been devoted to improving these properties of GBFs in the past few years. However, fabricating GBFs with high strength and electrical conductivity simultaneously remains as a great challenge. Herein, inspired by nacre‐like multilevel structural design, an interface‐reinforced method is developed to improve both the mechanical property and electrical conductivity of the GBFs by introducing polydopamine‐derived N‐doped carbon species as resistance enhancers, binding agents, and conductive connection “bridges.” Remarkably, both the tensile strength and electrical conductivity of the obtained GBFs are significantly improved to ≈724 MPa and ≈6.6 × 104 S m?1, respectively, demonstrating great superiority compared to previously reported similar GBFs. These outstanding integrated performances of the GBFs provide it with great application potential in the fields of flexible and wearable microdevices such as sensors, actuators, supercapacitors, and batteries.  相似文献   

9.
A new method for preparing flexible, transparent, and conductive multiwalled carbon nanotube (MWCNT) hybrid films with scratch resistance through a facile UV-curing method is described herein. UV-curable urethane oligomers were used as the binder between the MWCNTs and the plastic substrates. The transparency and sheet resistance of MWCNT thin films can be easily tailored by controlling the number of bar coaters. Composite films with different binder ratios were prepared to evaluate and optimize the surface abrasion resistance and adhesion parameter. Two types of MWCNT films, those with a 56% (with a 586 komega/sq sheet resistance) and a 78% transmittance (with a 22 Momega/sq sheet resistance) were obtained using the UV-curable resin, and the conductive films showed distinguished abrasion resistance and good adhesion.  相似文献   

10.
Coating inkjet‐printed traces of silver nanoparticle (AgNP) ink with a thin layer of eutectic gallium indium (EGaIn) increases the electrical conductivity by six‐orders of magnitude and significantly improves tolerance to tensile strain. This enhancement is achieved through a room‐temperature “sintering” process in which the liquid‐phase EGaIn alloy binds the AgNP particles (≈100 nm diameter) to form a continuous conductive trace. Ultrathin and hydrographically transferrable electronics are produced by printing traces with a composition of AgNP‐Ga‐In on a 5 µm‐thick temporary tattoo paper. The printed circuit is flexible enough to remain functional when deformed and can support strains above 80% with modest electromechanical coupling (gauge factor ≈1). These mechanically robust thin‐film circuits are well suited for transfer to highly curved and nondevelopable 3D surfaces as well as skin and other soft deformable substrates. In contrast to other stretchable tattoo‐like electronics, the low‐cost processing steps introduced here eliminate the need for cleanroom fabrication and instead requires only a commercial desktop printer. Most significantly, it enables functionalities like “electronic tattoos” and 3D hydrographic transfer that have not been previously reported with EGaIn or EGaIn‐based biphasic electronics.  相似文献   

11.
We designed and constructed reduced graphene oxide (rGO) functionalized high electron mobility transistor (HEMT) for rapid and ultra‐sensitive detection of label‐free DNA in real time. The micrometer sized rGO sheets with structural defects helped absorb DNA molecules providing a facile and robust approach to functionalization. DNA was immobilized onto the surface of HEMT gate through rGO functionalization, and changed the conductivity of HEMT. The real time monitor and detection of DNA hybridization by rGO functionalized HEMT presented interesting current responses: a “two steps” signal enhancement in the presence of target DNA; and a “one step” signaling with random DNA. These two different recognition patterns made the HEMT capable of specifically detecting target DNA sequence. The working principle of the rGO functionalized HEMT can be demonstrated as the variation of the ambience charge distribution. Furthermore, the as constructed DNA sensors showed excellent sensitivity of detect limit at 0.07 fM with linear detect range from 0.1 fM to 0.1 pM. The results indicated that the HEMT functionalized with rGO paves a new avenue to design novel electronic devices for high sensitive and specific genetic material assays in biomedical applications.  相似文献   

12.
The electrical, mechanical, and coupled electro-mechanical (piezoresistive) properties of multiwall carbon nanotube/polypropylene (MWCNT/PP) composites at four MWCNT concentrations above electrical percolation (4–10 wt %) were investigated. The electrical conductivity of the composite increased monotonically from 0.77 to 15.0 S/m with the increase of MWCNT concentration. The elastic modulus also increased monotonically with increased MWCNT concentration with the concomitant reduction of ultimate strain. The coupled signal between electrical resistance and applied strain during tensile loading displayed a marked change toward higher sensitivity at the elastic-to-plastic transition zone of the polymer composite, which allowed the identification of polymer yielding by the sole monitoring of electrical resistance. Large ratios (of the order of 15–29) of normalized changes in electrical resistance over applied strain (“gage factor”) were found in the plastic zone, and such electro-mechanical sensitivity was higher for composites with lower MWCNT content.  相似文献   

13.
The ingenious design of a freestanding flexible electrode brings the possibility for power sources in emerging wearable electronic devices. Here, reduced graphene oxide (rGO) wraps carbon nanotubes (CNTs) and rGO tightly surrounded by MnO2 nanosheets, forming a 3D multilevel porous conductive structure via vacuum freeze‐drying. The sandwich‐like architecture possesses multiple functions as a flexible anode for lithium‐ion batteries. Micrometer‐sized pores among the continuously waved rGO layers could extraordinarily improve ion diffusion. Nano‐sized pores among the MnO2 nanosheets and CNT/rGO@MnO2 particles could provide vast accessible active sites and alleviate volume change. The tight connection between MnO2 and carbon skeleton could facilitate electron transportation and enhance structural stability. Due to the special structure, the rGO‐wrapped CNT/rGO@MnO2 porous film as an anode shows a high capacity, excellent rate performance, and superior cycling stability (1344.2 mAh g−1 over 630 cycles at 2 A g−1, 608.5 mAh g−1 over 1000 cycles at 7.5 A g−1). Furthermore, the evolutions of microstructure and chemical valence occurring inside the electrode after cycling are investigated to illuminate the structural superiority for energy storage. The excellent electrochemical performance of this freestanding flexible electrode makes it an attractive candidate for practical application in flexible energy storage.  相似文献   

14.
Optically transparent, conductive, and mechanically flexible epoxy thin films are produced in the present study. Two types of multiwalled carbon nanotubes (MWCNTs) with different aspect ratios are dispersed in epoxy resin through an ultrasonication process. The MWCNT content is varied during the preparation of the thin films. The light transmittance and electrical conductivity of the thin films are characterized. Results show that composites containing MWCNTs with a lower aspect ratio exhibit enhanced electrical conductivity compared to those with a higher aspect ratio. A sheet resistance as low as 100 Ω/sq with nearly 60% optical transparency in 550 nm is achieved with the addition of MWCNTs in epoxy. In summary, transparent, conductive, and flexible MWCNT/epoxy thin films are successfully produced, and the properties of such films are governed by the aspect ratio and content of MWCNTs.  相似文献   

15.
An all‐carbon pressure sensor is designed and fabricated based on reduced graphene oxide (rGO) nanomaterials. By sandwiching one layer of superelastic rGO aerogel between two freestanding high‐conductive rGO thin papers, the sensor works based on the contact resistance at the aerogel–paper interfaces, getting rid of the alien materials such as polymers and metals adopted in traditional sensors. Without the limitation of alien materials, the all‐carbon sensors demonstrate an ultrawide detecting range (0.72 Pa–130 kPa), low energy consumption (≈0.58 µW), ultrahigh sensitivity (349–253 kPa?1) at low‐pressure regime (<1.4 Pa), fast response time (8 ms at 1 kPa), high stability (10 000 unloading–loading cycles between 0 and 1 kPa), light weight (<10 mg), easily scalable fabrication process, and excellent chemical stability. These merits enable them to detect real‐time human physiological signals and monitor the weights of various droplets of not only water but also hazardous chemical reagents including strong acid, strong alkali, and organic solvents. This shows their great potential applications in real‐time health monitoring, sport performance detecting, harsh environment‐related robotics and industry, and so forth.  相似文献   

16.
A material architecture and laser‐based microfabrication technique is introduced to produce electrically conductive films (sheet resistance = 2.95 Ω sq?1; resistivity = 1.77 × 10?6 Ω m) that are soft, elastic (strain limit >100%), and optically transparent. The films are composed of a grid‐like array of visually imperceptible liquid‐metal (LM) lines on a clear elastomer. Unlike previous efforts in transparent LM circuitry, the current approach enables fully imperceptible electronics that have not only high optical transmittance (>85% at 550 nm) but are also invisible under typical lighting conditions and reading distances. This unique combination of properties is enabled with a laser writing technique that results in LM grid patterns with a line width and pitch as small as 4.5 and 100 µm, respectively—yielding grid‐like wiring that has adequate conductivity for digital functionality but is also well below the threshold for visual perception. The electrical, mechanical, electromechanical, and optomechanical properties of the films are characterized and it is found that high conductivity and transparency are preserved at tensile strains of ≈100%. To demonstrate their effectiveness for emerging applications in transparent displays and sensing electronics, the material architecture is incorporated into a couple of illustrative use cases related to chemical hazard warning.  相似文献   

17.
Fabrication of patterned metallic films through chemical means is a primary objective in the emerging field of “bottom‐up” lithography. We present a simple technology for generating large area, highly uniform patterns of conductive gold microwires. The approach is based upon dissolution of a gold complex, Au(SCN)4, in an organic‐solvent/water mixture and confining the solution underneath polymeric molds. We show that Au(SCN)4 undergoes spontaneous crystallization/reduction, producing metallic Au microwires tracing the contours of the templates. Importantly, no shape‐directing molecules or reducing agents are required for Au microwire formation, as the thiocyanate ligands both donate the reducing electrons as well as direct the crystallization process of the Au patterns. We demonstrate application of the new technology for creating highly transparent conductive films.  相似文献   

18.
透明导电薄膜已广泛应用于印刷电子领域,传统的透明导电薄膜氧化铟锡(ITO)因其高脆性低柔韧性而不能满足高速发展的柔性电子行业;纳米银线(AgNWs)和石墨烯均具有良好光学性能、导电性能以及机械性能,使其能成为制备透明导电薄膜的理想材料。综述了近年来还原氧化石墨烯(rGO)基AgNWs透明导电薄膜的研究进展。介绍了柔性导电薄膜的关键参数及rGO/AgNWs透明导电薄膜的成膜工艺;归纳了影响rGO/AgNWs透明导电薄膜光电性能的主要因素和相关研究;阐述了rGO/AgNWs透明导电薄膜在印刷电子领域的应用现状,并展望了rGO/AgNWs透明导电薄膜的未来发展趋势。  相似文献   

19.
The strain-dependent electrical resistance characteristics of multi-walled carbon nanotube (MWCNT)/polymer composite films were investigated. In this research, polyethylene oxide (PEO) is used as the polymer matrix. Two representative volume fractions of MWCNT/PEO composite films were selected: 0.56?vol% (near the percolation threshold) and 1.44?vol% (away?from the percolation threshold) of MWCNT. An experimental setup which can measure electrical resistance and strain simultaneously and continuously has been developed. Unique and repeatable relationships in resistance versus strain were obtained for multiple specimens with different volume fractions of MWCNT. The overall pattern of electrical resistance change versus strain for the specimens tested consists of linear and nonlinear regions. A resistance change model to describe the combination of linear and nonlinear modes of electrical resistance change as a function of strain is suggested. The unique characteristics in electrical resistance change for different volume fractions imply that MWCNT/PEO composite films can be used as tunable strain sensors and for application into embedded sensor systems in structures.  相似文献   

20.
Next‐generation electrical nanoimprinting of a polymeric data sheet based on charge trapping phenomena is reported here. Carbon nanoparticles (CNPs) (waste carbon product) are deployed into a polymeric matrix (polyaniline) (PANI) as a charge trapping layer. The data are recorded on the CNPs‐filled polyaniline device layer by “electro‐typing” under a voltage pulse (VET, from ±1 to ±7 V), which is applied to the device layer through a localized charge‐injection method. The core idea of this device is to make an electrical image through the charge trapping mechanism, which can be “read” further by the subsequent electrical mapping. The density of stored charges at the carbon–polyaniline layer, near the metal/polymer interface, is found to depend on the voltage amplitude, i.e., the number of injected charge carriers. The relaxation of the stored charges is studied by different probe voltages and for different devices, depending on the percolation of the CNPs into the PANI. The polymeric data sheet retains the recorded data for more than 6 h, which can be refreshed or erased at will. Also, a write–read–erase–read cycle is performed for the smallest “bit” of stored information through a single contact between the probe and the device layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号