首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel surface‐enhanced Raman scattering (SERS) sensor is developed for real‐time and highly repeatable detection of trace chemical and biological indicators. The sensor consists of a polydimethylsiloxane (PDMS) microchannel cap and a nanopillar forest‐based open SERS‐active substrate. The nanopillar forests are fabricated based on a new oxygen‐plasma‐stripping‐of‐photoresist technique. The enhancement factor (EF) of the SERS‐active substrate reaches 6.06 × 106, and the EF of the SERS sensor is about 4 times lower due to the influence of the PDMS cap. However, the sensor shows much higher measurement repeatability than the open substrate, and it reduces the sample preparation time from several hours to a few minutes, which makes the device more reliable and facile for trace chemical and biological analysis.  相似文献   

2.
A universal femtoliter surface droplet‐based platform for direct quantification of trace of hydrophobic compounds in aqueous solutions is presented. Formation and functionalization of femtoliter droplets, concentrating the analyte in the solution, are integrated into a simple fluidic chamber, taking advantage of the long‐term stability, large surface‐to‐volume ratio, and tunable chemical composition of these droplets. In situ quantification of the extracted analytes is achieved by surface‐enhanced Raman scattering (SERS) spectroscopy by nanoparticles on the functionalized droplets. Optimized extraction efficiency and SERS enhancement by tuning droplet composition enable quantitative determination of hydrophobic model compounds of rhodamine 6G, methylene blue, and malachite green with the detection limit of 10?9 to 10?11 m and a large linear range of SERS signal from 10?9 to 10?6 m of the analytes. The approach addresses the current challenges of reproducibility and the lifetime of the substrate in SERS measurements. This novel surface droplet platform combines liquid–liquid extraction and highly sensitive and reproducible SERS detection, providing a promising technique in current chemical analysis related to environment monitoring, biomedical diagnosis, and national security monitoring.  相似文献   

3.
Tumor spheroids or microtumors are important 3D in vitro tumor models that closely resemble a tumor's in vivo “microenvironment” compared to 2D cell culture. Microtumors are widely applied in the fields of fundamental cancer research, drug discovery, and precision medicine. In precision medicine tumor spheroids derived from patient tumor cells represent a promising system for drug sensitivity and resistance testing. Established and commonly used platforms for routine screenings of cell spheroids, based on microtiter plates of 96‐ and 384‐well formats, require relatively large numbers of cells and compounds, and often lead to the formation of multiple spheroids per well. In this study, an application of the Droplet Microarray platform, based on hydrophilic–superhydrophobic patterning, in combination with the method of hanging droplet, is demonstrated for the formation of highly miniaturized single‐spheroid‐microarrays. Formation of spheroids from several commonly used cancer cell lines in 100 nL droplets starting with as few as 150 cells per spheroid within 24–48 h is demonstrated. Established methodology carries a potential to be adopted for routine workflows of high‐throughput compound screening in 3D cancer spheroids or microtumors, which is crucial for the fields of fundamental cancer research, drug discovery, and precision medicine.  相似文献   

4.
A facile fabrication approach of large‐scale flexible films is reported, with one surface side consisting of Ag‐nanoparticle (Ag‐NP) decorated polyacrylonitrile (PAN) nanohump (denoted as Ag‐NPs@PAN‐nanohump) arrays. This is achieved via molding PAN films with ordered nanohump arrays on one side and then sputtering much smaller Ag‐NPs onto each of the PAN‐nanohumps. Surface‐enhanced Raman scattering (SERS) activity of the Ag‐NPs@PAN‐nanohump array films can be improved by curving the flexible PAN film with ordered nanohump arrays during the Ag‐sputtering process to increase the density of the Ag‐NPs on the sidewalls of the PAN‐nanohumps. More 3D hot spots are thus achieved on a large‐scale. The Ag‐NPs@PAN‐nanohump array films show high SERS activity with good Raman signal reproducibility for Rhodamine 6G probe molecules. To trial their practical application, the Ag‐NPs@PAN‐nanohump array films are employed as SERS substrates for trace detection of trinitrotoluene and a congener of polychlorinated biphenyls. A lower detection limit of 10−12m and 10−5m can be achieved, respectively. Furthermore, the flexible Ag‐NPs@PAN‐nanohump array films can also be utilized as swabs to probe traces of methyl parathion on the surface of fruits such as apples. The as‐fabricated SERS substrates therefore have promising potential for applications in rapid safety inspection and environmental protection.  相似文献   

5.
A preconcentrating surface‐enhanced Raman scattering (SERS) sensor for the analysis of liquid‐soaked tissue, tiny liquid droplets and thin liquid films without the necessity to collect the analyte is reported. The SERS sensor is based on a block‐copolymer membrane containing a spongy‐continuous pore system. The sensor's upper side is an array of porous nanorods having tips functionalized with Au nanoparticles. Capillarity in combination with directional evaporation drives the analyte solution in contact with the flat yet nanoporous underside of the SERS sensor through the continuous nanopore system toward the nanorod tips where non‐volatile components of the analyte solution precipitate at the Au nanoparticles. The nanorod architecture increases the sensor surface in the detection volume and facilitates analyte preconcentration driven by directional solvent evaporation. The model analyte 5,5′‐dithiobis(2‐nitrobenzoic acid) can be detected in a 1 × 10?3m solution ≈300 ms after the sensor is brought into contact with the solution. Moreover, a sensitivity of 0.1 ppm for the detection of the dissolved model analyte is achieved.  相似文献   

6.
The early‐time kinetics (<1 s) of lead sulfide (PbS) quantum dot formation are probed using a novel droplet‐based microfluidic platform, which allows for high‐throughput and real‐time optical analysis of the reactive process with millisecond time resolution. The reaction platform enables the concurrent investigation of the emission characteristics of PbS quantum dots and a real‐time estimation of their size and concentration during nucleation and growth. These investigations reveal a two‐stage mechanism for PbS nanoparticle formation. The first stage corresponds to the fast conversion of precursor species to PbS crystals, followed by the growth of the formed particles. The growth kinetics of the PbS nanoparticles follow the Lifshitz–Slyozov–Wagner model for Ostwald ripening, allowing direct estimation of the rate constants for the process. In addition, the extraction of absorption spectra of ultrasmall quantum dots is demonstrated for first time in an online manner. The droplet‐based microfluidic platform integrated with online spectroscopic analysis provides a new tool for the quantitative extraction of high temperature kinetics for systems with rapid nucleation and growth stages.  相似文献   

7.
A surface enhanced Raman scattering (SERS)‐assisted 3D barcode chip has been developed for high‐throughput biosensing. The 3D barcode is realized through joint 2D spatial encoding with the Raman spectroscopic encoding, which stores the SERS fingerprint information in the format of a 2D array. Here, the concept of SERS‐assisted 3D barcode is demonstrated through multiplex immunoassay, where simultaneous detection of multiple targets in different samples has been achieved using a microfluidic platform. First, multiple proteins in different samples are spatially separated using a microfluidic patterned antibody barcode substrate, forming a 2D hybridization array. Then the SERS probes are used to identify and quantify the proteins. As different SERS probes are labeled with different Raman reporters, they could be employed as “SERS tags” to incorporate spectroscopic information into the 3D barcode. In this 3D barcode, the 2D spatial information helps to differentiate the samples and targets while the SERS information allows quantitative multiplex detection. It is found that the SERS‐assisted 3D barcode chip can not only accomplish one‐step multiplex detection within 30 min but also achieve an ultrasensitivity down to 10 fg mL?1 (≈70 aM), which is expected to provide a promising tool for high‐throughput biomedical applications.  相似文献   

8.
Nanoparticle‐assembled octahedral Ag nanocages with sharp edges have been successfully synthesized through a Cu2O‐based template‐assisted strategy. In the reaction system, Ag nanoparticles can be self‐assembled on the surface of Cu2O octahedrons, which is accomplished by the reduction of Ag+ by NaBH4 in the presence of sodium citrate as a capping agent. The hollow octahedral Ag nanocages are obtained after removing the inner Cu2O cores with acetic acid. According to the scanning electron microscopy (SEM) and transmission electron microscopy characterization, the Ag nanocages are weaved by small nanoparticles, the rough surfaces are bestrewed with pores and sharp edges. It is found that the pack density of Ag nanoparticles strongly affects the surface enhanced Raman scattering (SERS) activities. The as‐prepared 1.05‐Ag cages with optimal pack density have suitable interparticle distance and suitable size of pores, which significantly enhance SERS signals. The SERS signals of rhodamine 6G (R6G) molecules can be detected at an ultralow concentration of 10?14 m when 1.05‐Ag cages are used as substrates. In addition to sensitivity, 1.05‐Ag cages also exhibit good reproducibility. It is expected that the ultrahigh sensitivity will endow the Ag nanocages to become a promising candidate as high‐performance SERS‐based chemical sensor.  相似文献   

9.
Wearable pressure sensors, which can perceive and respond to environmental stimuli, are essential components of smart textiles. Here, large‐area all‐textile‐based pressure‐sensor arrays are successfully realized on common fabric substrates. The textile sensor unit achieves high sensitivity (14.4 kPa?1), low detection limit (2 Pa), fast response (≈24 ms), low power consumption (<6 µW), and mechanical stability under harsh deformations. Thanks to these merits, the textile sensor is demonstrated to be able to recognize finger movement, hand gestures, acoustic vibrations, and real‐time pulse wave. Furthermore, large‐area sensor arrays are successfully fabricated on one textile substrate to spatially map tactile stimuli and can be directly incorporated into a fabric garment for stylish designs without sacrifice of comfort, suggesting great potential in smart textiles or wearable electronics.  相似文献   

10.
It is very challenging to accurately quantify the amounts of amyloid peptides Aβ40 and Aβ42, which are Alzheimer's disease (AD) biomarkers, in blood owing to their low levels. This has driven the development of sensitive and noninvasive sensing methods for the early diagnosis of AD. Here, an approach for the synthesis of Ag nanogap shells (AgNGSs) is reported as surface‐enhanced Raman scattering (SERS) colloidal nanoprobes for the sensitive, selective, and multiplexed detection of Aβ40 and Aβ42 in blood. Raman label chemicals used for SERS signal generation modulate the reaction rate for AgNGSs production through the formation of an Ag‐thiolate lamella structure, enabling the control of nanogaps at one nanometer resolution. The AgNGSs embedded with the Raman label chemicals emit their unique SERS signals with a huge intensity enhancement of up to 107 and long‐term stability. The AgNGS nanoprobes, conjugated with an antibody specific to Aβ40 or Aβ42, are able to detect these AD biomarkers in a multiplexed manner in human serum based on the AgNGS SERS signals. Detection is possible for amounts as low as 0.25 pg mL?1. The AgNGS nanoprobe‐based sandwich assay has a detection dynamic range two orders of magnitude wider than that of a conventional enzyme‐linked immunosorbent assay.  相似文献   

11.
Fabricating perfect plasmonic nanostructures has been a major challenge in surface enhanced Raman scattering (SERS) research. Here, a double‐layer stacked Au/Al2O3@Au nanosphere structures is designed on the silicon wafer to bring high density, high intensity “hot spots” effect. A simply reproducible high‐throughput approach is shown to fabricate feasibly this plasmonic nanostructures by rapid thermal annealing (RTA) and atomic layer deposition process (ALD). The double‐layer stacked Au nanospheres construct a three‐dimensional plasmonic nanostructure with tunable nanospacing and high‐density nanojunctions between adjacent Au nanospheres by ultrathin Al2O3 isolation layer, producing highly strong plasmonic coupling so that the electromagnetic near‐field is greatly enhanced to obtain a highly uniform increase of SERS with an enhancement factor (EF) of over 107. Both heterogeneous nanosphere group (Au/Al2O3@Ag) and pyramid‐shaped arrays structure substrate can help to increase the SERS signals further, with a EF of nearly 109. These wafer‐scale, high density homo/hetero‐metal‐nanosphere arrays with tunable nanojunction between adjacent shell‐isolated nanospheres have significant implications for ultrasensitive Raman detection, molecular electronics, and nanophotonics.  相似文献   

12.
The separate co‐encapsulation and selective controlled release of multiple encapsulants in a predetermined sequence has potentially important applications for drug delivery and tissue engineering. However, the selective controlled release of distinct contents upon one triggering event for most existing microcarriers still remains challenging. Here, novel microfluidic fabrication of compound‐droplet‐pairs‐filled hydrogel microfibers (C‐Fibers) is presented for two‐step selective controlled release under AC electric field. The parallel arranged compound droplets enable the separate co‐encapsulation of distinct contents in a single microfiber, and the release sequence is guaranteed by the discrepancy of the shell thickness or core conductivity of the encapsulated droplets. This is demonstrated by using a high‐frequency electric field to trigger the first burst release of droplets with higher conductivity or thinner shell, followed by the second release of the other droplets under low‐frequency electric field. The reported C‐Fibers provide novel multidelivery system for a wide range of applications that require controlled release of multiple ingredients in a prescribed sequence.  相似文献   

13.
Bottom‐up synthetic biology has directed most efforts toward the construction of artificial compartmentalized systems that recreate living cell functions in their mechanical, morphological, or metabolic characteristics. However, bottom‐up synthetic biology also offers great potential to study subcellular structures like organelles. Because of their intricate and complex structure, these key elements of eukaryotic life forms remain poorly understood. Here, the controlled assembly of lipid enclosed, organelle‐like architectures is explored by droplet‐based microfluidics. Three types of giant unilamellar vesicles (GUVs)‐based synthetic organelles (SOs) functioning within natural living cells are procedured: (A) synthetic peroxisomes supporting cellular stress‐management, mimicking an organelle innate to the host cell by using analogous enzymatic modules; (B) synthetic endoplasmic reticulum (ER) as intracellular light‐responsive calcium stores involved in intercellular calcium signalling, mimicking an organelle innate to the host cell but utilizing a fundamentally different mechanism; and (C) synthetic magnetosomes providing eukaryotic cells with a magnetotactic sense, mimicking an organelle that is not natural to the host cell but transplanting its functionality from other branches of the phylogenetic tree. Microfluidic assembly of functional SOs paves the way for high‐throughput generation of versatile intracellular structures implantable into living cells. This in‐droplet SO design may support or expand cellular functionalities in translational nanomedicine.  相似文献   

14.
A droplet‐based microfluidic method for the preparation of anisotropic gold nanocrystal dispersions is presented. Gold nanoparticle seeds and growth reagents are dispensed into monodisperse picoliter droplets within a microchannel. Confinement within small droplets prevents contact between the growing nanocrystals and the microchannel walls. The critical factors in translating macroscale flask‐based methods to a flow‐based microfluidic method are highlighted and approaches are demonstrated to flexibly fine tune nanoparticle shapes into three broad classes: spheres/spheroids, rods, and extended sharp‐edged structures, thus varying the optical resonances in the visible–near‐infrared (NIR) spectral range.  相似文献   

15.
Miniaturization and parallelization of combinatorial organic synthesis is important to accelerate the process of drug discovery while reducing the consumption of reagents and solvents. This work presents a miniaturized platform for on‐chip solid‐phase combinatorial library synthesis with UV‐triggered on‐chip cell screening. The platform is based on a nanoporous polymer coating on a glass slide, which is modified via photolithography to yield arrays of hydrophilic (HL) spots surrounded by superhydrophobic (SH) surface. The combination of HL spots and SH background enables confinement of nanoliter droplets, functioning as miniaturized reactors for the solid‐phase synthesis. The polymer serves as support for nanomolar solid‐phase synthesis, while a photocleavable linker enables the release of the synthesized compounds into the droplets containing live cells. A 588 compound library of bisamides is synthesized via a four‐component Ugi reaction on the chip and products are detected via stamping of the droplet array onto a conductive substrate and subsequent matrix‐assisted laser desorption ionization mass spectrometry. The light‐induced cleavage shows high flexibility in screening conditions by spatial, temporal, and quantitative control.  相似文献   

16.
A method is developed to synthesize surface‐enhanced Raman scattering (SERS) materials capable of single‐molecule detection, integrated with a microfluidic system. Using a focused laser, silver nanoparticle aggregates as SERS monitors are fabricated in a microfluidic channel through photochemical reduction. After washing out the monitor, the aggregates are irradiated again by the same laser. This key step leads to full reduction of the residual reactants, which generates numerous small silver nanoparticles on the former nanoaggregates. Consequently, the enhancement ability of the SERS monitor is greatly boosted due to the emergence of new “hot spots.” At the same time, the influence of the notorious “memory effect” in microfluidics is substantially suppressed due to the depletion of surface residues. Taking these advantages, two‐step photoreduced SERS materials are able to detect different types of molecules with the concentration down to 10?13m . Based on a well‐accepted bianalyte approach, it is proved that the detection limit reaches the single‐molecule level. From a practical point of view, the detection reproducibility at different probing concentrations is also investigated. It is found that the effective single‐molecule SERS measurements can be raised up to ≈50%. This microfluidic SERS with high reproducibility and ultrasensitivity will find promising applications in on‐chip single‐molecule spectroscopy.  相似文献   

17.
An economical method of fabricating large‐area (up to a 100‐mm wafer) silver (Ag)‐coated black silicon (BS) substrates is demonstrated by cryogenic deep reactive ion etching with inductively coupled plasma. This method enables a simple adjustment of the spike structure (e.g., height, width, sidewall slope and density of the spikes) on the silicon substrate, which thus offers the advantages of accurate tuning the density and amplitude of the localized surface plasmons after Ag coating. Using this method, an enhancement factor of 109 is achieved for the probe molecule of rhodamine 6G (around two orders of magnitude higher than previous results based on Ag‐coated BS) in surface‐enhanced Raman scattering (SERS) measurement. The presented results pave the way to make Ag‐coated BS substrates as economic and large‐area platforms for diverse surface plasmon related applications (such as SERS and surface plasmon based biosensors).  相似文献   

18.
Silicon nanowire arrays (SiNWAs) decorated with metallic nanoparticle heterostructures feature promising applications in surface-enhanced Raman scattering (SERS). However, the densely arranged SiNWAs are usually inconvenient for the following decoration of metallic nanoparticles, and only the top area of silicon nanowires (SiNWs) contributes to the SERS detection. To improve the utilization of the heterostructure, herein, oblique SiNWAs were grown separately, and Ag nanoparticles (AgNPs) were uniformly deposited by magnetron sputtering to get the three-dimensional (3D) SiNWAs decorated with AgNPs (AgNPs-SiNWAs) SERS substrate. The large open surfaces of oblique SiNWs would create more surface area available for the formation of hotspots and improve the adsorption and excitation of analyte molecules on the wire. The optimized AgNPs-SiNWAs substrate exhibits high sensitivity in detecting chemical molecule Rhodamine 6G, and the detection limit can reach 1 × 10?10 M. More importantly, the substrate also can be used as an effective DNA sensor for label-free DNA detection.  相似文献   

19.
Droplet‐based microreactors are used for the continuous production of Pd nanocrystals. Specifically, commercially available polytetrafluoroethylene (PTFE) tube and silica capillaries are utilized to fabricate a fluidic device capable of generating water‐in‐oil droplets. In addition to the feasibility of using such droplets as microreactors for conducting a synthesis, the ability to control the composition and concentration of reagents by adjusting the flow rates is demonstrated; reagents are mixed by periodically pinching the PTFE tube, and nanocrystals are produced with uniform size distribution in a continuous fashion. The capability to tailor the size and shape of the resultant nanocrystals is further demonstrated by introducing the reducing agent and capping agent at different flow rates to control the nucleation and growth processes. The ability to transform a bulk synthesis into a droplet‐based system holds great potential for the development of a new route to the high‐volume production of nanocrystals.  相似文献   

20.
Biological processes and technological applications cannot work without liquid control, where versatile water droplet manipulation is a significant issue. Droplet motion is conventionally manipulated by functionalizing the target surface or by utilizing additives in the droplet, still, with uncontrolled limitation on superhydrophobic surfaces since droplets are either unable to move fast or are difficult to stop while moving. A controllable high‐speed “all‐in‐one” no‐loss droplet manipulation, that is, in‐plane moving and stopping/pinning in any direction on a superhydrophobic surface, with electrostatic charging is demonstrated. The experimental results reveal that the transport speed can vary from zero to several hundreds of millimeters per second. Controlled dynamic switching between the onset moving state and the offset pinning state of a water droplet can be achieved by out‐of‐plane electrostatic charging. This work opens the possibility of droplet control techniques in various applications, such as combinatory chemistry, biochemical, and medical detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号