首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial infection is one of the most serious physiological conditions threatening human health. There is an increasing demand for more effective bacterial diagnosis and treatment through noninvasive theranostic approaches. Herein, a new strategy is reported to achieve in vivo metabolic labeling of bacteria through the use of MIL‐100 (Fe) nanoparticles (NPs) as the nanocarrier for precise delivery of 3‐azido‐d ‐alanine (d ‐AzAla). After intravenous injection, MIL‐100 (Fe) NPs can accumulate preferentially and degrade rapidly within the high H2O2 inflammatory environment, releasing d ‐AzAla in the process. d ‐AzAla is selectively integrated into the cell walls of bacteria, which is confirmed by fluorescence signals from clickable DBCO‐Cy5. Ultrasmall photosensitizer NPs with aggregation‐induced emission characteristics are subsequently designed to react with the modified bacteria through in vivo click chemistry. Through photodynamic therapy, the amount of bacteria on the infected tissue can be significantly reduced. Overall, this study demonstrates the advantages of metal–organic‐framework‐assisted bacteria metabolic labeling strategy for precise bacterial detection and therapy guided by fluorescence imaging.  相似文献   

2.
Stem‐cell‐based regenerative medicine holds great promise in clinical practices. However, the fate of stem cells after transplantation, including the distribution, viability, and the cell clearance, is not fully understood, which is critical to understand the process and the underlying mechanism of regeneration for better therapeutic effects. Herein, we develop a dual‐labeling strategy to in situ visualize the fate of transplanted stem cells in vivo by combining the exogenous near‐infrared fluorescence imaging in the second window (NIR‐II) and endogenous red bioluminescence imaging (BLI). The NIR‐II fluorescence of Ag2S quantum dots is employed to dynamically monitor the trafficking and distribution of all transplanted stem cells in vivo due to its deep tissue penetration and high spatiotemporal resolution, while BLI of red‐emitting firefly luciferase (RfLuc) identifies the living stem cells after transplantation in vivo because only the living stem cells express RfLuc. This facile strategy allows for in situ visualization of the dynamic trafficking of stem cells in vivo and the quantitative evaluation of cell translocation and viability with high temporal and spatial resolution, and thus reports the fate of transplanted stem cells and how the living stem cells help, regeneration, for an instance, of a mouse with acute liver failure.  相似文献   

3.
Chemotherapy has been validated unavailable for treatment of renal cell carcinoma (RCC) in clinic due to its intrinsic drug resistance. Sensitization of chemo‐drug response plays a crucial role in RCC treatment and increase of patient survival. Herein, a recognition‐reaction‐aggregation (RRA) cascaded strategy is utilized to in situ construct peptide‐based superstructures on the renal cancer cell membrane, enabling specifically perturbing the permeability of cell membranes and enhancing chemo‐drug sensitivity in vitro and in vivo. First, P1‐DBCO can specifically recognize renal cancer cells by targeting carbonic anhydrase IX. Subsequently, P2‐N3 is introduced and efficiently reacts with P1‐DBCO to form a peptide P3, which exhibits enhanced hydrophobicity and simultaneously aggregates into a superstructure. Interestingly, the superstructure retains on the cell membrane and perturbs its integrity/permeability, allowing more doxorubicin (DOX) uptaken by renal cancer cells. Owing to this increased influx, the IC50 is significantly reduced by nearly 3.5‐fold compared with that treated with free DOX. Finally, RRA strategy significantly inhibits the tumor growth of xenografted mice with a 3.2‐fold enhanced inhibition rate compared with that treated with free DOX. In summary, this newly developed RRA strategy will open a new avenue for chemically engineering cell membranes with diverse biomedical applications.  相似文献   

4.
A highly emissive far‐red/near‐infrared (FR/NIR) fluorescent conjugated polymer (CP), poly[(9,9‐dihexylfluorene)‐co‐2,1,3‐benzothiadiazole‐co‐4,7‐di(thiophen‐2‐yl)‐2,1,3‐benzothiadiazole] (PFBTDBT10) is designed and synthesized via Suzuki polymerization. Formulation of PFBTDBT10 using 1,2‐distearoyl‐sn‐glycero‐3‐phosphoethanolamine‐N‐[methoxy(polyethylene glycol)‐2000] (DSPE‐PEG2000) and DSPE‐PEG5000‐folate as the encapsulation matrix yielded CP‐loaded DSPE‐PEG‐folic acid nanoparticles (CPDP‐FA NPs) with bright FR/NIR fluorescence (27% quantum yield) and a large Stoke's shift of 233 nm in aqueous solution. CPDP‐FA NPs show improved thermal/photostabilities and larger Stoke's shifts as compared to commercially available quantum dots (Qdot 655) and organic dyes such as Alexa Fluor 555 and Rhodamine 6G. In vivo studies of CPDP‐FA NPs on a hepatoma H22 tumor‐bearing mouse model reveal that they could serve as an efficient FR/NIR fluorescent probe for targeted in vivo fluorescence imaging and cancer detection in a high contrast and specific manner. Together with the negligible in vivo toxicity, CPDP‐FA NPs are promising FR/NIR fluorescent probes for future in vivo applications.  相似文献   

5.
Time window of antibiotic administration is a critical but long‐neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics are increasingly causing catastrophic drug‐resistance. Here, a second near‐infrared (NIR‐II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) is presented to dynamically monitor bacterial infection in vivo in a real‐time manner. The prepared PbS QDs not only provide a low detection limit (104 CFU mL?1) of four typical bacteria strains in vitro but also show a particularly high labeling efficiency with Escherichia coli (E. coli). The NIR‐II in vivo imaging results reveal that the number of invading bacteria first decreases after post‐injection, then increases from 1 d to 1 week and drop again over time in infected mouse models. Meanwhile, there is a simultaneous variation of dendritic cells, neutrophils, macrophages, and CD8+ T lymphocytes against bacterial infection at the same time points. Notably, the infected mouse self‐heals eventually without antibiotic treatment, as a robust immune system can successfully prevent further health deterioration. The NIR‐II imaging approach enables real‐time monitoring of bacterial infection in vivo, thus facilitating spatiotemporal deciphering of time window for antibiotic treatment.  相似文献   

6.
Proven as a natural barrier against viral infection, pulmonary surfactant phospholipids have a biophysical and immunological role within the respiratory system, acting against microorganisms including viruses. Enveloped viruses have, in common, an outer bilayer membrane that forms the underlying structure for viral membrane proteins to function in an optimal way to ensure infectivity. Perturbating the membrane of viruses using exogenous lipids can be envisioned as a generic way to reduce their infectivity. In this context, the potential of exogenous lipids to be used against enveloped virus infectivity would be indicated by the resulting physical stress imposed to the viral membrane, and conical lipids, i.e. lyso-lipids, would be expected to generate stronger biophysical disturbances. We confirm that when treated with lyso-lipids the infectivity three strains of influenza virus (avian H2N3, equine H3N8 or pandemic human influenza H1N1) is reduced by up to 99% in a cell-based model. By contrast, lipids with a similar head group but two aliphatic chains were less effective (reducing infection by only 40–50%). This work opens a new path to merge concepts from different research fields, i.e. ‘soft matter physics'' and virology.  相似文献   

7.
Recent years have witnessed significant progress in molecular probes for cancer diagnosis. However, the conventional molecular probes are designed to be “always‐on” by attachment of tumor‐targeting ligands, which limits their abilities to diagnose tumors universally due to the variations of targeting efficiency and complex environment in different cancers. Here, it is proposed that a color‐convertible, activatable probe is responding to a universal tumor microenvironment for tumor‐specific diagnosis without targeting ligands. Based on the significant hallmark of up‐regulated hydrogen peroxide (H2O2) in various tumors, a novel unimolecular micelle constructed by boronate coupling of a hydrophobic hyperbranched poly(fluorene‐co‐2,1,3‐benzothiadiazole) core and many hydrophilic poly(ethylene glycol) arms is built as an H2O2‐activatable fluorescent nanoprobe to delineate tumors from normal tissues through an aggregation‐enhanced fluorescence resonance energy transfer strategy. This color‐convertible, activatable nanoprobe is obviously blue‐fluorescent in various normal cells, but becomes highly green‐emissive in various cancer cells. After intravenous injection to tumor‐bearing mice, green fluorescent signals are only detected in tumor tissue. These observations are further confirmed by direct in vivo and ex vivo tumor imaging and immunofluorescence analysis. Such a facile and simple methodology without targeting ligands for tumor‐specific detection and imaging is worthwhile to further development.  相似文献   

8.
Robust luminescent dyes with efficient two‐photon fluorescence are highly desirable for biological imaging applications, but those suitable for organic dots fabrication are still rare because of aggregation‐caused quenching. In this work, a red fluorescent silole, 2,5‐bis[5‐(dimesitylboranyl)thiophen‐2‐yl]‐1‐methyl‐1,3,4‐triphenylsilole ((MesB)2DTTPS), is synthesized and characterized. (MesB)2DTTPS exhibits enhanced fluorescence efficiency in nanoaggregates, indicative of aggregation‐enhanced emission (AEE). The organic dots fabricated by encapsulating (MesB)2DTTPS within lipid‐PEG show red fluorescence peaking at 598 nm and a high fluorescence quantum yield of 32%. Upon excitation at 820 nm, the dots show a large two‐photon absorption cross section of 3.43 × 105 GM, which yields a two‐photon action cross section of 1.09 × 105 GM. These (MesB)2DTTPS dots show good biocompatibility and are successfully applied to one‐photon and two‐photon fluorescence imaging of MCF‐7 cells and two‐photon in vivo visualization of the blood vascular of mouse muscle in a high‐contrast and noninvasive manner. Moreover, the 3D blood vasculature located at the mouse ear skin with a depth of over 100 μm can also be visualized clearly, providing the spatiotemporal information about the whole blood vascular network.  相似文献   

9.
The capsid of human rhinovirus serotype 2, consisting of four viral proteins, was fluorescence-labeled with fluorescein isothiocyanate and analyzed by capillary electrophoresis using UV and laser-induced fluorescence detection. Heat denaturation, proteolytic digestion, and receptor binding were applied for confirmation of the identity of the peak with the labeled virus. Incomplete derivatization with the fluorophore preserved the affinity of the virus for its receptor, indicating that its cell entry pathway is unperturbed by this chemical modification; indeed, an infectivity assay confirms that the labeled virus samples are infectious. The results show that fluorescence labeling of the viral capsid might lead to a valuable probe for studying infection processes in the living cell.  相似文献   

10.
Seasonal emerging infectious diseases such as influenza A impose substantial risk and need new translational strategies to achieve active immunomodulation. Here, a novel injectable pathogen‐mimicking hydrogel (iPMH) that can enhance both cellular and humoral immune responses is suggested. By the help of poly(γ‐glutamic acid) that has abundant carboxylate groups and dispersion helper function, hydrophobic immunostimulatory 3‐O‐desacyl‐4′‐monophosphoryl lipid A (MPLA) molecules and viral antigens (PR8, W150) can be successfully combined as pathogen‐mimicking adjuvants. Polyelectrolyte complex between the poly(γ‐glutamic acid)‐based adjuvants and collagens generate in situ gel‐forming hydrogel at physiological temperature. When the iPMH are immunized, they act as a pathogen‐mimicking (MPLA, H1N1, H5N1) immune priming center and a depot for continuous stimulation of immune system, resulting in the induction of high levels (8.5 times higher) of antigen‐specific IgG titers in the sera of mice and the increased number of IFN‐γ‐producing cells (7.3 times higher) compared with those in the groups immunized with antigen plus clinically used aluminum gels. Following the intranasal infection of the mouse adapted virus (emerging infectious 2009 H1N1 and highly pathogenic 2006 H5N1) at 50 times the 50% lethal dose, the mice immunized with viral antigens plus iPMH exhibit 100% protective immunity against lethal virus challenge.  相似文献   

11.
Nanomedicine is gaining ground worldwide in therapy and diagnostics. Novel nanoscopic imaging probes serve as imaging tools for studying dynamic biological processes in vitro and in vivo. To allow detectability in the physiological environment, the nanostructure‐based probes need to be either inherently detectable by biomedical imaging techniques, or serve as carriers for existing imaging agents. In this study, the potential of mesoporous silica nanoparticles carrying commercially available fluorochromes as self‐regenerating cell labels for long‐term cellular tracking is investigated. The particle surface is organically modified for enhanced cellular uptake, the fluorescence intensity of labeled cells is followed over time both in vitro and in vivo. The particles are not exocytosed and particles which escaped cells due to cell injury or death are degraded and no labeling of nontargeted cell populations are observed. The labeling efficiency is significantly improved as compared to that of quantum dots of similar emission wavelength. Labeled human breast cancer cells are xenotransplanted in nude mice, and the fluorescent cells can be detected in vivo for a period of 1 month. Moreover, ex vivo analysis reveals fluorescently labeled metastatic colonies in lymph node and rib, highlighting the capability of the developed probes for tracking of metastasis.  相似文献   

12.
Avian influenza A(H7N9) virus, which emerged in China in the spring of 2013, has infected hundreds of people and resulted in many deaths. Herein, a rapid and quantitative assay is proposed for the one‐step detection of H7N9 virions. Immunomagnetic nanospheres (IMNs) and antibody‐conjugated quantum dots (Ab‐QDs) are simultaneously employed to capture and identify the target virus, leading to a high efficiency, good specificity, and strong anti‐interference ability. Moreover, this reliable detection assay, which combines the efficient magnetic enrichment and the unique photophysical properties of QDs, can achieve a high sensitivity for a low detection limit. At the same time, this detection strategy shows great flexibility for employment in a variety of fluorescence detectors, including fluorescence spectrometry, microscope assays, and handheld UV lamp tests. Furthermore, our one‐step detection strategy induces very little change in the integrity of the vulnerable virions, which enables additional genotyping testing following the fluorescence detection. The present study, thus, reports a rapid and quantitative approach for the detection of H7N9 virions based on simultaneous magnetic capture and QD labeling, thereby providing a higher probability for detection and therefore faster diagnosis of H7N9‐infected patients.  相似文献   

13.
A new strategy is presented for using doped small‐molecule organic nanoparticles (NPs) to achieve high‐performance fluorescent probes with strong brightness, large Stokes shifts and tunable emissions for in vitro and in vivo imaging. The host organic NPs are used not only as carriers to encapsulate different doped dyes, but also as fluorescence resonance energy transfer donors to couple with the doped dyes (as acceptors) to achieve multicolor luminescence with amplified emissions (AE). The resulting optimum green emitting NPs show high brightness with quantum yield (QY) of up to 45% and AE of 12 times; and the red emitting NPs show QY of 14% and AE of 10 times. These highly‐luminescent doped NPs can be further surface modified with poly(maleic anhydride‐alt‐1‐octadecene)‐polyethylene glycol (C18PMH‐PEG), endowing them with excellent water dispersibility and robust stability in various bio‐environments covering wide pH values from 2 to 10. In this study, cytotoxicity studies and folic acid targeted cellular imaging of these multicolor probes are carried out to demonstrate their potential for in vitro imaging. On this basis, applications of the NP probes in in vivo and ex vivo imaging are also investigated. Intense fluorescent signals of the doped NPs are distinctly, selectively and spatially resolved in tumor sites with high sensitivity, due to the preferential accumulation of the NPs in tumor sites through the passive enhanced permeability and retention effect. The results clearly indicate that these doped NPs are promising fluorescent probes for biomedical applications.  相似文献   

14.
A tumor microenvironment responsive nanoprobe is developed for enhanced tumor imaging through in situ crosslinking of the Fe3O4 nanoparticles modified with a responsive peptide sequence in which a tumor‐specific Arg‐Gly‐Asp peptide for tumor targeting and a self‐peptide as a “mark of self” are linked through a disulfide bond. Positioning the self‐peptide at the outmost layer is aimed at delaying the clearance of the nanoparticles from the bloodstream. After the self‐peptide is cleaved by glutathione within tumor microenvironment, the exposed thiol groups react with the remaining maleimide moieties from adjacent particles to crosslink the particles in situ. Both in vitro and in vivo experiments demonstrate that the aggregation substantially improves the magnetic resonance imaging (MRI) contrast enhancement performance of Fe3O4 particles. By labeling the responsive particle probe with 99mTc, single‐photon emission computed tomography is enabled not only for verifying the enhanced imaging capacity of the crosslinked Fe3O4 particles, but also for achieving sensitive dual modality imaging of tumors in vivo. The novelty of the current probe lies in the combination of tumor microenvironment‐triggered aggregation of Fe3O4 nanoparticles for boosting the T2 MRI effect, with antiphagocytosis surface coating, active targeting, and dual‐modality imaging, which is never reported before.  相似文献   

15.
The zebrafish is an important vertebrate model for disease, drug discovery, toxicity, embryogenesis, and neuroscience. In vivo fluorescence microscopy can reveal cellular and subcellular details down to the molecular level with fluorescent proteins (FPs) currently the main tool for zebrafish imaging. However, long maturation times, low brightness, photobleaching, broad emission spectra, and sample autofluorescence are disadvantages that cannot be easily overcome by FPs. Here, a bright and photostable terbium-to-quantum dot (QD) Förster resonance energy transfer (FRET) nanoprobe with narrow and tunable emission bands for intracellular in vivo imaging is presented. The long photoluminescence (PL) lifetime enables time-gated (TG) detection without autofluorescence background. Intracellular four-color multiplexing with a single excitation wavelength and in situ assembly and FRET to mCherry demonstrate the versatility of the TG-FRET nanoprobes and the possibility of in vivo bioconjugation to FPs and combined nanoprobe-FP FRET sensing. Upon injection at the one-cell stage, FRET nanoprobes can be imaged in developing zebrafish embryos over seven days with toxicity similar to injected RNA and strongly improved signal-to-background ratios compared to non-TG imaging. This work provides a strategy for advancing in vivo fluorescence imaging applications beyond the capabilities of FPs.  相似文献   

16.
In the past decade, there has been significant progress in the development of water soluble near‐infrared fluorochromes for use in a wide range of imaging applications. Fluorochromes with high photo and thermal stability, sensitivity, adequate pharmacological properties and absorption/emission maxima within the near infrared window (650–900 nm) are highly desired for in vivo imaging, since biological tissues show very low absorption and auto‐fluorescence at this spectrum window. Taking these properties into consideration, a myriad of promising near infrared fluorescent probes has been developed recently. However, a hallmark of most of these probes is a rapid clearance in vivo, which hampers their application. It is hypothesized that encapsulation of the near infrared fluorescent dye DY‐676‐COOH, which undergoes fluorescence quenching at high concentrations, in the aqueous interior of liposomes will result in protection and fluorescence quenching, which upon degradation by phagocytes in vivo will lead to fluorescence activation and enable imaging of inflammation. Liposomes prepared with high concentrations of DY‐676‐COOH reveal strong fluorescence quenching. It is demonstrated that the non‐targeted PEGylated fluorescence‐activatable liposomes are taken up predominantly by phagocytosis and degraded in lysosomes. Furthermore, in zymosan‐induced edema models in mice, the liposomes are taken up by monocytes and macrophages which migrate to the sites of inflammation. Opposed to free DY‐676‐COOH, prolonged stability and retention of liposomal‐DY‐676‐COOH is reflected in a significant increase in fluorescence intensity of edema. Thus, protected delivery and fluorescence quenching make the DY‐676‐COOH‐loaded liposomes a highly promising contrast agent for in vivo optical imaging of inflammatory diseases.  相似文献   

17.
Fluorescence imaging is a powerful tool for studying biologically relevant macromolecules, but its applicability is often limited by the fluorescent probe, which must demonstrate both high site‐specificity and emission efficiency. In this regard, M13 virus, a versatile biological scaffold, has previously been used to both assemble fluorophores on its viral capsid with molecular precision and to also target a variety of cells. Although M13‐fluorophore systems are highly selective, these complexes typically suffer from poor molecular detection limits due to low absorption cross‐sections and moderate quantum yields. To overcome these challenges, a coassembly of the M13 virus, cyanine 3 dye, and silver nanoparticles is developed to create a fluorescent tag capable of binding with molecular precision with high emissivity. Enhanced emission of cyanine 3 of up to 24‐fold is achieved by varying nanoparticle size and particle‐fluorophore separation. In addition, it is found that the fluorescence enhancement increases with increasing dye surface density on the viral capsid. Finally, this highly fluorescent probe is applied for in vitro staining of E. coli. These results demonstrate an inexpensive framework for achieving tuned fluorescence enhancements. The methodology developed in this work is potentially amendable to fluorescent detection of a wide range of M13/cell combinations.  相似文献   

18.
During uncoating of human rhinoviruses, the innermost capsid protein VP4 and the genomic RNA are released from the viral protein shell. This process gives rise to subviral particles that are composed of the remaining three capsid proteins VP1, VP2, and VP3. The process is believed to take place in a sequential manner in that first VP4 is expelled resulting in A-particles sedimenting at 135S followed by the RNA resulting in B-particles sedimenting at 80S. Aiming at ultimately analyzing this process in vivo, we introduced two different fluorophores into the RNA and the viral capsid proteins, respectively. Incubation of the virus with RiboGreen resulted in formation of a RNA-dye complex with lambda(ex)/lambda(em) = 500/525 nm, whereas subsequent derivatization of the viral protein shell in the same sample with AMCA-S introduced a label with lambda(ex)/lambda(em) = 345-350/440-460 nm. In this way, both viral components could be selectively detected via fluorescence in a capillary electrophoresis system. The intact virus delivers two superimposed signals in the electropherogram. Derivatization of the free amino groups of the capsid proteins partially preserved the bioaffinity of the virus toward a synthetic receptor fragment, an artificial recombinant concatemer of repeat number 3 of the very low density lipoprotein receptor. Between 10 and 20% of the infectivity were recovered after labeling when compared to native virus. In addition to analysis of factors influencing the stability of the virus by CE, double-labeled virions might be useful for the investigation of the uncoating process by real-time confocal fluorescence microscopy.  相似文献   

19.
Molecular imaging significantly transforms the field of biomedical science and facilitates the visualization, characterization, and quantification of biologic processes. However, it is still challenging to monitor cell localization in vivo, which is essential to the study of tumor metastasis and in the development of cell‐based therapies. While most conventional small‐molecule fluorescent probes cannot afford durable cell labeling, transfection of cells with fluorescent proteins is limited by their fixed fluorescence, poor tissue penetration, and interference of autofluorescence background. Here, a bioresponsive near‐infrared fluorescent probe is reported as facile and reliable tool for real‐time cell tracking in vivo. The design of this probe relies on a new phenomenon observed upon fluorobenzene‐conjugated fluorescent dyes, which can form complexes with cytosolic glutathione and actively translocates to lysosomes, exhibiting enhanced and stable cell labeling. Fluorobenzene‐coupled hemicyanine, a near‐infrared fluorophore manifests to efficiently staining tumor cells without affecting their invasive property and enables persistent monitoring of cell migration in metastatic tumor murine models at high resolution for one week. The method of fluorobenzene functionalization also provides a simple and universal “add‐on” strategy to render ordinary fluorescent probes suitable for long‐term live‐cell tracking, for which currently there is a deficit of suitable molecular tools.  相似文献   

20.
Super‐resolution fluorescence microscopy allows for unprecedented in situ visualization of biological structures, but its application to materials science has so far been comparatively limited. One of the main reasons is the lack of powerful dyes that allow for labeling and photoswitching in materials science systems. In this study it is shown that appropriate substitution of diarylethenes bearing a fluorescent closed and dark open form paves the way for imaging nanostructured materials with three of the most popular super‐resolution fluorescence microscopy methods that are based on different concepts to achieve imaging beyond the diffraction limit of light. The key to obtain optimal resolution lies in a proper control over the photochemistry of the photoswitches and its adaption to the system to be imaged. It is hoped that the present work will provide researchers with a guide to choose the best photoswitch derivative for super‐resolution microscopy in materials science, just like the correct choice of a Swiss Army Knife's tool is essential to fulfill a given task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号