首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
Development of high‐performance organic electronic and optoelectronic devices relies on high‐quality semiconducting crystals that have outstanding charge transport properties and long exciton diffusion length and lifetime. To achieve integrated device applications, it is a prerequisite to precisely locate the organic semiconductor crystals (OSCCs) to form a specifically patterned structure. Well‐patterned OSCCs can not only reduce leakage current and cross‐talk between neighboring devices, but also facilely integrate with other device elements and their corresponding interconnects. In this Review, general strategies for the patterning of OSCCs are summarized, and the advantages and limitations of different patterning methods are discussed. Discussion is focused on an advanced strategy for the high‐resolution and wafer‐scale patterning of OSCC by a surface microstructure‐assisted patterning method. Furthermore, the recent progress on OSCC pattern‐based integrated circuities is highlighted. Finally, the research challenges and directions of this young field are also presented.  相似文献   

3.
4.
5.
Ambipolar organic field‐effect transistors (OFETs) combining single‐crystalline p‐ and n‐type organic micro/nanocrystals have demonstrated superior performance to their amorphous or polycrystalline thin‐film counterparts. However, large‐area alignment and precise patterning of organic micro/nanocrystals for ambipolar OFETs remain challenges. Here, a surface‐energy‐controlled stepwise crystallization (SECSC) method is reported for large‐scale, aligned, and precise patterning of single‐crystalline laterally stacked p–n heterojunction microbelt (MB) arrays. In this method, the p‐ and n‐type organic crystals are precipitated via a stepwise process: first, the lateral sides of prepatterned photoresist stripes provide high‐surface‐energy sites to guide the aligned growth of p‐type organic crystals. Next, the formed p‐type crystals serve as new high‐surface‐energy positions to induce the crystallization of n‐type organic molecules at their sides, thus leading to the formation of laterally stacked p–n microbelts. Ambipolar OFETs based on the p–n heterojunction MB arrays exhibit balanced hole and electron mobilities of 0.32 and 0.43 cm2 V?1 s?1, respectively, enabling the fabrication of complementary‐like inverters with large voltage gains. This work paves the way toward rational design and construction of single‐crystalline organic p–n heterojunction arrays for high‐performance organic, integrated circuits.  相似文献   

6.
Organic field‐effect transistors and near‐infrared (NIR) organic phototransistors (OPTs) have attracted world's attention in many fields in the past decades. In general, the sensitivity, distinguishing the signal from noise, is the key parameter to evaluate the performance of NIR OPTs, which is decided by responsivity and dark current. 2D single crystal films of organic semiconductors (2DCOS) are promising functional materials due to their long‐range order in spite of only few molecular layers. Herein, for the first time, air‐stable 2DCOS of n‐type organic semiconductors (a furan‐thiophene quinoidal compound, TFT‐CN) with strong absorbance around 830 nm, by the facile drop‐casting method on the surface of water are successfully prepared. Almost millimeter‐sized TFT‐CN 2DCOS are obtained and their thickness is below 5 nm. A competitive field‐effect electron mobility (1.36 cm2 V?1 s?1) and high on/off ratio (up to 108) are obtained in air. Impressively, the ultrasensitive NIR phototransistors operating at the off‐state exhibit a very low dark current of ≈0.3 pA and an ultrahigh detectivity (D*) exceeding 6 × 1014 Jones because the devices can operate in full depletion at the off‐state, superior to the majority of the reported organic‐based NIR phototransistors.  相似文献   

7.
The search for low‐cost, large‐area, flexible devices has led to a remarkable increase in the research and development of organic semiconductors, which serve as one of the most important components for organic field‐effect transistors (OFETs). In the current review, we highlight deposition techniques that offer precise control over the location or in‐plane orientation of organic semiconductors. We focus on various vapor‐ and solution‐processing techniques for patterning organic single crystals in desired locations. Furthermore, the alignment of organic semiconductors via different methods relying on mechanical forces, alignment layers, epitaxial growth, and external magnetic and electric fields are surveyed. The advantages, limitations, and applications of these techniques in OFETs are also discussed.  相似文献   

8.
9.
The standard technique to separately and simultaneously determine the carrier concentration per unit volume (N , cm?3) and the mobility (μ) of doped inorganic single crystals is to measure the Hall effect. However, this technique has not been reported for bulk‐doped organic single crystals. Here, the Hall effect in bulk‐doped single‐crystal organic semiconductors is measured. A key feature of this work is the ultraslow co‐deposition technique, which reaches as low as 10?9 nm s?1 and enables us to dope homoepitaxial organic single crystals with acceptors at extremely low concentrations of 1 ppm. Both the hole concentration per unit volume (N , cm?3) and the Hall mobility (μH) of bulk‐doped rubrene single crystals, which have a band‐like nature, are systematically observed. It is found that these rubrene single crystals have (i) a high ionization rate and (ii) scattering effects because of lattice disturbances, which are peculiar to this organic single crystal.  相似文献   

10.
11.
12.
13.
14.
The patterning of functional materials represents a crucial step for the implementation of organic semiconducting materials into functional devices. Classical patterning techniques such as photolithography or shadow masking exhibit certain limitations in terms of choice of materials, processing techniques and feasibility for large area fabrication. The use of self‐assembled monolayers (SAMs) as a patterning tool offers a wide variety of opportunities, from the region‐selective deposition of active components to guiding the crystallization direction. Here, we discuss general techniques and mechanisms for SAM‐based patterning and show that all necessary components for organic electronic devices, i.e., conducting materials, dielectrics, organic semiconductors, and further functional layers can be patterned with the use of self‐assembled monolayers. The advantages and limitations, and potential further applications of patterning approaches based on self‐assembled monolayers are critically discussed.  相似文献   

15.
16.
17.
18.
19.
20.
The existence of defects and traps in a transistor plays an adverse role on efficient charge transport. In response to this challenge, extensive research has been conducted on semiconductor crystalline materials in the past decades. However, the development of dielectric crystals for transistors is still in its infancy due to the lack of appropriate dielectric crystalline materials and, most importantly, the crystal morphology required by the gate dielectric layer, which is also crucial for the construction of high‐performance transistor as it can greatly improve the interfacial quality of carrier transport path. Here, a new type of dielectric crystal of hexagonal aluminum nitride (AlN) with the desired 2D morphology of combing thin thickness with large lateral dimension is synthesized. Such a suitable morphology in combination with the outstanding dielectric properties of AlN makes it promising as a gate dielectric for transistors. Furthermore, ultrathin 2,6‐diphenylanthracene molecular crystals with only a few molecular layers can be prepared on AlN crystal via van der Waals epitaxy. As a result, this all‐crystalline system incorporating dielectric and semiconductor crystals greatly enhances the overall performance of a transistor, indicating the importance of minimizing defects and preparing high‐quality semiconductor/dielectric interface in a transistor configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号