首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A reversed-phase high-performance liquid chromatography-mass spectrometry (LC-MS) method is described for the separation and simultaneous analysis of porphyrins related to disorders of heme biosynthesis (uro-, heptacarboxylic, hexacarboxylic, pentacarboxylic, and coproporphyrins). The method involves initial porphyrin esterification and extraction from urine. Detection and quantification is performed from the extracts by separation with a Hypersil BDS column and on-line detection by MS through coupling with an atmospheric pressure chemical ionization interface. The porphyrin esters are detected as protonated molecules [M + H]+. Their mass spectra also exhibit an [M + Na]+ fragment of lower intensity. The analytical performance of this method is compared with those of LC with UV and fluorescence detection. LC-MS used in selective [M + H]+ ion monitoring provides the lowest detection and quantitation limits. In scan mode, this LC-MS method affords, without further isolation or concentration steps, the measurement of mass spectra of unknown compounds present in the urine of patients with altered porphyrin excretion.  相似文献   

2.
An HPLC/MS/MS method has been developed for the characterization and quantification of ginsenosides contained in extracts of the root of Panax ginseng (Korean ginsengs) and Panax quinquefolius L. (American ginsengs). The [M + H]+ and [M + Na]+ ions were observed for ginsenoside standards (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1) and four different ginseng extracts. The glycosidic linkages, the core, and the attached sugar(s) of the ginsenosides can be determined from the collision-induced dissociation spectra from the protonated molecules. The relative distribution of these ginsenosides in each extract of American or Korean ginseng was established.  相似文献   

3.
The effects of various mobile-phase additives, solution pH, pKa, and analyte concentration on electrospray ionization mass spectra of a series of purine and pyrimidine nucleoside antiviral agents were studied in both positive and negative ion models. The use of 1% acetic acid resulted in good HPLC separation and the greatest sensitivity for [M + H]+ ions. In the negative ion mode, 50 mM ammonium hydroxide gave the greatest sensitivity for [M - H]- ions. The sensitivities as [M + H]+ ions were significantly larger than the sensitivities as [M - H]- ions for purine antiviral agents. Vidarabine monophosphate and pyrimidine antiviral agents, however, showed comparable or greater sensitivities as [M - H]- ions. The sensitivity as [M + H]+ showed no systematic variation with pH; however, the sensitivity as [M - H]- did increase with increasing pH. At constant pH, the ion intensity of the protonated species increased with increasing pKa. At higher analyte concentrations, dimer (M2H+) and trimer (M3H+) ions were observed. [M + Na]+ adducts were the dominant ions with 0.5 mM sodium salts for these compounds. The spectra of the more basic purine antiviral agents showed no [M + NH4]+ adduct ions, but [M + NH4]+ ions were the major peaks in the spectra of the less basic pyrimidine antiviral agents with ammonium salts. The ammonium adduct ion was formed preferentially when the proton affinity of the analyte was close to that of NH3. Abundant [M + OAc]- ions were observed for all of the antiviral agents except vidarabine monophosphate from solutions with added HOAc, NaOAc, and NH4OAc. The utility of mobile phases containing 1% HOAc or 50 mM NH4OH was demonstrated for chromatographic separations.  相似文献   

4.
The use of an intermediate-pressure matrix-assisted laser desorption/ionization (IP-MALDI) source working at 0.17 Torr on a linear ion trap (LIT) was investigated for the analysis of tissue specimens, in particular, spinal cord sections. MALDI, with 2,5-dihydroxybenzoic acid (DHB) as the matrix, was employed for the detection of phospholipids. The matrix was applied to the tissue using electrospray to avoid analyte migration. The results indicate that analyzing tissue specimens at nontraditional MALDI vacuum pressures is possible. Coupling MALDI to an LIT permits the use of MSn, which is critical for the ability to identify compounds desorbed directly from tissue specimens. Using MSn, ions detected from m/z 600-1000 were characterized as phosphatidlycholines, PC. Specifically, using tandem MS, PC ions could be classified as either [M + H]+ or [M + Na]+ because the fragmentation patterns of protonated and sodiated phosphatidlycholines follow different pathways.  相似文献   

5.
A series of epipolythiodioxopiperazines in the fungus Chaetomium cochliodes was investigated using reversed-phase liquid chromatography with diode array detection and electrospray quadrupole time-of-flight-type tandem mass spectrometry in the positive ion mode. The fragmentation of protonated molecular ions including low-abundance parent ions, [M+H]+ for five known epipolythiodioxopiperazines, dethiotetra(methylthio)chetomin, chaetocochins A-C, and chetomin, was carried out using low-energy collision-induced electrospray ionization tandem spectrometry. It was found that McLafferty rearrangements occurred in the CID processes and produced a complementary pair of characteristic fragment ions containing piperazine rings (fused and unfused), especially to determine the number of S atoms on each ring. The fragmentation differential between [M+H]+ and [M+Na]+ was uncovered. Complementary fragmentation information obtained from [M+H]+ and [M+Na]+ precursor ions is especially valuable for rapid identification of epipolythiodioxopiperazines. A likely known compound, possibly related to chetoseminudin A, and three new species of epipolythiodioxopiperazines from the fungus C. cochliodes were identified or tentatively characterized based on tandem mass spectra of known ones.  相似文献   

6.
Rearrangement reactions involving migration of fucose and, occasionally, other residues have been found in the CID spectra of [M + H]+ and [M + 2H]2+ ions, but not [M + Na]+ ions, generated from several O-linked carbohydrates and milk sugars derivatized at their reducing termini with aromatic amines such as 2-aminobenzamide. Such rearrangements, which are similar to those reported by other investigators from several underivatized carbohydrates and glycosides, cause an apparent loss of sugar residues from within a carbohydrate chain and can produce ambiguous results during spectral interpretation. A mechanism, involving initial protonation of the amine nitrogen atom of the derivative, is proposed to account for the formation of the observed ions.  相似文献   

7.
The position(s) of carbon-carbon double bonds within lipids can dramatically affect their structure and reactivity and thus has a direct bearing on biological function. Commonly employed mass spectrometric approaches to the characterization of complex lipids, however, fail to localize sites of unsaturation within the molecular structure and thus cannot distinguish naturally occurring regioisomers. In a recent communication [Thomas, M. C.; Mitchell, T. W.; Blanksby, S. J. J. Am. Chem. Soc. 2006, 128, 58-59], we have presented a new technique for the elucidation of double bond position in glycerophospholipids using ozone-induced fragmentation within the source of a conventional electrospray ionization mass spectrometer. Here we report the on-line analysis, using ozone electrospray mass spectrometry (OzESI-MS), of a broad range of common unsaturated lipids including acidic and neutral glycerophospholipids, sphingomyelins, and triacylglycerols. All lipids analyzed are found to form a pair of chemically induced fragment ions diagnostic of the position of each double bond(s) regardless of the polarity, the number of charges, or the adduct ion (e.g., [M - H](-), [M - 2H](2-), [M + H](+), [M + Na](+), [M + NH(4)](+)). The ability of OzESI-MS to distinguish lipids that differ only in the position of the double bonds is demonstrated using the glycerophosphocholine standards, GPCho(9Z-18:1/9Z-18:1) and GPCho(6Z-18:1/6Z-18:1). While these regioisomers cannot be differentiated by their conventional tandem mass spectra, the OzESI-MS spectra reveal abundant fragment ions of distinctive mass-to-charge ratio (m/z). The approach is found to be sufficiently robust to be used in conjunction with the m/z 184 precursor ion scans commonly employed for the identification of phosphocholine-containing lipids in shotgun lipidomic analyses. This tandem OzESI-MS approach was used, in conjunction with conventional tandem mass spectral analysis, for the structural characterization of an unknown sphingolipid in a crude lipid extract obtained from a human lens. The OzESI-MS data confirm the presence of two regioisomers, namely, SM(d18:0/15Z-24:1) and SM(d18:0/17Z-24:1), and suggest the possible presence of a third isomer, SM(d18:0/19Z-24:1), in lower abundance. The data presented herein demonstrate that OzESI-MS is a broadly applicable, on-line approach for structure determination and, when used in conjunction with established tandem mass spectrometric methods, can provide near complete structural characterization of a range of important lipid classes. As such, OzESI-MS may provide important new insight into the molecular diversity of naturally occurring lipids.  相似文献   

8.
Pyrimidine glycols, or 5,6-dihydroxy-5,6-dihydropyrimidines, are primary lesions in DNA induced by reactive oxygen species. In this article, we report the preparation and tandem mass spectrometry (MS/MS) characterization of the two cis diastereomers of the glycol lesions of 2'-deoxyuridine, 5-methyl-2'-deoxycytidine, and thymidine. Our results show that collisional activation of the [M + Na]+ ions of all the three pairs of cis isomers and that of the [M + H]+ ions of the 2'-deoxyuridine glycols and 5-methyl-2'-deoxycytidine glycols give a facile loss of a water molecule. Interestingly, the water loss occurs more readily for the 6S isomer than for the 6R isomer. Likewise, product ion spectra of the [M - H]- ions of the two cis isomers of the 2'-deoxyuridine glycols and thymidine glycols show more facile loss of water for the 6S isomer than for the 6R isomer. MS/MS acquired at different collisional energies gave similar results, which establishes the reproducibility of spectra.  相似文献   

9.
Ions formed from lipids during electrospray ionization of crude lipid extracts have been mass-selected within a quadrupole linear ion trap mass spectrometer and allowed to react with ozone vapor. Gas-phase ion-molecule reactions between unsaturated lipid ions and ozone are found to yield two primary product ions for each carbon-carbon double bond within the molecule. The mass-to-charge ratios of these chemically induced fragments are diagnostic of the position of unsaturation within the precursor ion. This novel analytical technique, dubbed ozone-induced dissociation (OzID), can be applied both in series and in parallel with conventional collision-induced dissociation (CID) to provide near-complete structural assignment of unknown lipids within complex mixtures without prior fractionation or derivatization. In this study, OzID is applied to a suite of complex lipid extracts from sources including human lens, bovine kidney, and commercial olive oil, thus demonstrating the technique to be applicable to a broad range of lipid classes including both neutral and acidic glycerophospholipids, sphingomyelins, and triacylglycerols. Gas-phase ozonolysis reactions are also observed with different types of precursor ions including [M+H]+, [M+Li]+, [M+Na]+, and [M-H]-: in each case yielding fragmentation data that allow double bond position to be unambiguously assigned. Within the human lens lipid extract, three sphingomyelin regioisomers, namely SM(d18:0/15Z-24:1), SM(d18:0/17Z-24:1), and SM(d18:0/19Z-24:1), and a novel phosphatidylethanolamine alkyl ether, GPEtn(11Z-18:1e/9Z-18:1), are identified using a combination of CID and OzID. These discoveries demonstrate that lipid identification based on CID alone belies the natural structural diversity in lipid biochemistry and illustrate the potential of OzID as a complementary approach within automated, high-throughput lipid analysis protocols.  相似文献   

10.
Mass spectrometry and tandem mass spectrometry of citrus limonoids   总被引:2,自引:0,他引:2  
Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring structure. CAD of the adduct ion [M + H + NH3]+ of limonoid glucosides produced the aglycone moiety corresponding to each glucoside. The combination of mass spectrometry and tandem mass spectrometry provides a powerful technique for identification and characterization of citrus limonoids.  相似文献   

11.
Cardiac glycosides (CG) are of forensic importance because of their toxicity and the fact that very limited methods are available for identification of CG in biological samples. In this study, we have developed an identification and quantification method for digoxin, digitoxin, deslanoside, digoxigenin, and digitoxigenin by high-performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS). CG formed abundant [M + NH4]+ ions and much less abundant [M + H]+ ions as observed with electrospray ionization (ESI) source and ammonium formate buffer. Under mild conditions for collision-induced dissociation (CID), each [M + NH4]+ ion fragmented to produce a dominant daughter ion, which was essential to the sensitive method of selected reaction monitoring (SRM) quantification of CG achieved in this study. SRM was compared with selected ion monitoring (SIM) regarding the effects of sample matrixes on the methodology. SRM produced lower detection limits with biological samples than SIM, while both methods produced equal detection limits with CG standards. On the basis of the HPLC/MS/MS results for CG, we have proposed some generalized points for conducting sensitive SRM measurements, in view of the property of analytes as well as instrumental conditions such as the type of HPLC/MS interface and CID parameters. Analytes of which the molecular ion can produce one abundant daughter ion with high yield under CID conditions may be sensitively measured by SRM. ESI is the most soft ionization source developed so far and can afford formation of the fragile molecular ions that are necessary for sensitive SRM detection. Mild CID conditions such as low collision energy and low pressure of collision gas favor production of an abundant daughter ion that is essential to sensitive SRM detection. This knowledge may provide some guidelines for conducting sensitive SRM measurements of very low concentrations of drugs or toxicants in biological samples.  相似文献   

12.
In glycoproteomics, key structural issues, protein identification, locations of glycosylation sites, and evaluation of the glycosylation site microheterogeneity should be easily evaluated in a large number of glycoproteins, while mass spectrometry (MS) provides substantial information about individual purified glycoproteins. Considering that structural issues are elucidated by studying glycopeptides and that the tandem MS of a tryptic peptide composed of several amino acid residues is enough for protein identification, construction of an MS-based method handling tryptic glycopeptides would be of considerable benefit in research. To this end, a simple and efficient method, utilizing hydrophilic binding of carbohydrate matrixes such as cellulose and Sepharose to oligosaccharides, was successfully applied to the isolation of tryptic glycopeptides. Both peptide and oligosaccharide structures were elucidated by multiple-stage tandem MS (MS(n)) of the ions generated by matrix-assisted laser desorption/ionization (MALDI), as follows. The MALDI ion trap mass spectrum of a tryptic glycopeptide mixture from N-linked glycoproteins was composed of the [M + H]+ ions of component glycopeptides. Collision-induced dissociation (CID) of the glycopeptide [M + H]+ ion generated saccharide-spaced peaks, with an interval of, for example, 146, 162, and 203 Da, and their fragment ions corresponding to the peptide and peptide + N-acetylglucosamine (GlcNAc) species in the MS2 spectrum. The saccharide-spaced ladder served to outline oligosaccharide structures, which were then selected as precursors for subsequent MS(n) analyses. The peptide or peptide + GlcNAc ions in the MS2 spectrum or the corresponding ions abundant in the MS1 spectrum were subjected to CID for determination of peptide sequences, to identify proteins and their glycosylation sites. The strategy, isolation of glycopeptides followed by MS(n) analysis, efficiently characterized the structures of beta2-glycoprotein I with four N-glycosylation sites and was applied to an analysis of total serum glycoproteins.  相似文献   

13.
I K Chu  X Guo  T C Lau  K W Siu 《Analytical chemistry》1999,71(13):2364-2372
A strategy for semiautomatic sequencing of argentinated (silver-containing) oligopeptides has been developed. Sequencing is based on a search algorithm that identifies a triplet peak relationship in a product ion spectrum of the [M + Ag]+ ion of an oligopeptide. The ions that constitute a triplet are [bn + OH + Ag]+, [bn - H + Ag]+, and [a(n) - H + Ag]+, which are separated by 18 and 28 m/z units, respectively. The difference in the m/z values of adjacent triplets identifies the residue that is "cleaved". Observation of the [yn + H + Ag]+ ion containing the cleaved residue confirms the assignment. Sequencing of argentinated tryptic peptides may prove useful for automated proteome analysis via the sequence tag method.  相似文献   

14.
This paper describes the optimization of sample preparation for MALDI 193-nm photofragment ion time-of-flight mass spectrometry to sequence small to medium-sized peptides from peptide mixtures. We show that matrix additives, such as fructose and phenylbutyric acid have a dramatic effect on the abundance of fragment ions observed in the post-source decay spectra. A dried-droplet MALDI matrix consisting of 1:1 alpha-cyano-4-hydroxycinnamic acid/fructose proves to be an excellent matrix for photodissociation because [M + H]+ ions are formed with low internal energies, and the photofragment ion spectrum contains high abundances of sequence-informative ions. The addition of fructose appears to improve overall sample homogeneity and durability, as compared to conventional alpha-cyano-4-hydroxycinnamic acid dried-droplet preparations. MALDI-TOF photodissociation is then used to selectively sequence the peptides bradykinin (RPPGFSPFR), des-Arg9 bradykinin (RPPGFSPF), and substance P-amide (RPKPQQFFGLM-NH2) from a mixture of five peptides.  相似文献   

15.
This study describes the application of liquid chromatography/mass spectrometry (LC/MS) methods for distinguishing between aliphatic and aromatic hydroxylations and between hydroxylations and N-oxidations. Hydroxylations and N-oxidations are common biotransformation reactions of drugs. Electrospray (ESI) and atmospheric pressure chemical ionization (APCI) were used to generate ions from liquid chromatographic effluents. ESI-MS, ESI-MS/MS, APCI-MS, and APCI-MS/MS experiments were performed on several metabolites and derivatives of loratadine (a long-acting and nonsedating tricyclic antihistamine) using an ion trap mass spectrometer (LCQ) and a triple-quadrupole mass spectrometer (TSQ). The observations are as follows: (1) LC/ESI-MS produced predominantly [M + H]+ ions with minor fragmentation. (2) LC/ESI-MS/MS data, however, showed a predominant loss of water from metabolites with aliphatic hydroxylation while the loss of water was not favored when hydroxylation was phenolic. N-Oxides (aromatic and aliphatic) showed only a small amount of water loss in the MS/MS spectra. (3) Under LC/APCI-MS conditions, aliphatic hydroxylation could be readily distinguished from aromatic hydroxylation based on the extent of water loss. In addition, N-oxides produced distinct [M + H - O]+ ions. These [M + H - O]+ ions were not produced in the APCI-MS spectra of hydroxylated metabolites. (4) Similar to the ESI-MS/MS spectra, the APCI-MS/MS spectra from the (M + H)+ ions of N-oxides yielded a small amount of water loss but no [M + H - O]+ ions. These results indicate that LC/APCI-MS can be used to distinguish between hydroxylated metabolites and N-oxides.  相似文献   

16.
A novel and practical technique for performing both parent and neutral loss (P&NL) monitoring experiments on a quadrupole ion trap mass spectrometer is presented. This technique is capable of performing scans analogous to the parent and neutral loss scans routinely applied on tandem-in-space instruments and allows for the screening of a sample to detect analytes of a specific compound class on a chromatographic time-scale. Acylcarnitines were chosen as the model compound class to demonstrate the analytical utility of P&NL monitoring because of their amenability to electrospray ionization (ESI), their unique and informative MS/MS fragmentation pattern, and their importance in biological functions. The [M + H]+ ions of all acylcarnitines dissociate to produce neutral losses of 59 and 161 amu and common product ions at m/z 60, 85, and 144. Both the neutral loss monitoring of 59 amu and the parent ion monitoring of m/z 85 are shown to be capable of identifying acylcarnitine [M + H]+ ions in a synthetic mixture and spiked pig plasma. The neutral loss monitoring of 59 amu is successful in detecting acylcarnitines in an unspiked pig plasma sample.  相似文献   

17.
The ability of electrospray ionization mass spectrometry (ESI MS) to analyze heavy aromatic petroleum fractions using silver nitrate as a reagent compound to form characteristic adduct ions has been examined. The complexation of aromatic compounds containing long alkyl substituents with the silver ion leads to the formation of abundant adduct ions such as [M + Ag]+ and [2M + Ag]+. The concentration of the [2M + Ag]+ ions can be reduced by increasing the sampling cone voltage. Molecular ions and other adduct ions may also be formed depending on the structure of the aromatic molecule. Results obtained from the analysis of representative heavy petroleum fractions and vacuum residues by the Ag+ ESI MS method and conventional ionization methods were in good agreement. The current method extends the applicability of electrospray ionization to the analysis of neutral hydrocarbons in heavy aromatic petroleum fractions. It is simple and compatible with widely available LC/MS instrumentation. The extreme complexity of the Ag  相似文献   

18.
An isotopically coded affinity probe was developed and evaluated for the characterization and quantification of proteins adducted by 2-alkenals derived from lipid peroxidation (LPO) processes. Lipid-derived 2-alkenals, such as acrolein and 4-hydroxy-2-nonenal (HNE), have the ability to react with cysteine, histidine, and lysine residues in proteins, thus causing protein damage and loss of protein function. Such modifications of proteins are difficult to characterize in biological samples by mass spectrometry due to the complexity of protein extracts and the low abundance of adducted proteins. The novel aldehyde-reactive, hydrazide-functionalized, isotope-coded affinity tag (HICAT) described in this study was found effective for the selective isolation, detection, and quantification of Michael-type adducts of 2-alkenals with proteins using a combination of affinity isolation, nanoLC, and matrix-assisted laser desorption ionization tandem mass spectrometry (MALDI-MS/MS). The chemical and mass spectrometric properties of the new probe are demonstrated on a model protein treated with HNE. The efficacy of HICAT for the analysis of complex samples was tested using preparations of mitochondrial proteins that were modified in vitro with HNE. The potential of the HICAT strategy for the identification, characterization, and quantification of in vivo oxylipid-protein conjugates is demonstrated on cardiac mitochondrial protein preparations, in which, for example, the ADP/ATP translocase 1 was found adducted to the 2-alkenals, acrolein and 4-hydroxy-2-hexenal, at Cys-256.  相似文献   

19.
Desorption electrospray ionization mass spectrometry (DESI MS) is rapidly becoming accepted as a powerful surface characterization tool for a wide variety of samples in the open air. Besides its well-established high-throughput capabilities, a unique feature of DESI is that chemical reactions between the charged spray microdroplets and surface molecules can be exploited to enhance ionization. Here, we present a rapid screening assay for artesunate antimalarials based on reactive DESI. Artesunate is a vital therapy for Plasmodium falciparum malaria, but artesunate tablets have been counterfeited on a very large scale in SE Asia, and more recently in Africa. For this reason, faster and more sensitive screening tests are urgently needed. The proposed DESI assay is based on the formation of stable noncovalent complexes between linear alkylamines dissolved in the DESI spray solution and artesunate molecules exposed on the tablet surface. We found that, depending on amine type and concentration, a sensitivity gain of up to 170x can be obtained, in comparison to reagent-less DESI. Hexylamine (Hex), dodecylamine (DDA), and octadecylamine (ODA) produced proton-bound noncovalent complexes with gas-phase stabilities, increasing in the order [M + Hex + H]+ < [M + DDA + H]+ < [M + ODA + H]+. Tandem MS experiments revealed that complex formation occurred by hydrogen bonding between the amine nitrogen and the ether-like moieties within the artesunate lactone ring. After the reactive DESI assay was fully characterized, it was applied to a set of recently collected suspicious artesunate tablets purchased in shops and pharmacies in SE Asia. Not only did we find that these samples were counterfeits, but we also detected the presence of several wrong active ingredients. Of particular concern was the positive detection of artesunate traces in the surface of one of the samples, which we quantified with standard chromatographic techniques.  相似文献   

20.
The effects of mobile-phase additives and analyte concentration on electrospray ionization mass spectra of a series of tetracyclines were investigated in both positive and negative ion modes. Only [M + H](+) and [M - H](-) ions were observed. The greatest sensitivity as [M + H](+) ions was obtained with 1% acetic acid and the greatest sensitivity as [M - H](-) ions was obtained using 50 mM ammonium hydroxide. Sensitivities in the positive ion mode were greater than those in the negative ion mode. The sensitivity as [M + H](+) showed no systematic variation with pH; however, the sensitivity as [M - H](-) did increase with increasing pH. A larger linear range was observed for [M - H](-) than for [M + H](+) ions. Both [M + Na](+) and [M + H](+) ions were observed with 0.5 mM sodium acetate and sodium iodide, but no adduct ions were observed with ammonium acetate. Some M(2)H(+) ions were observed at higher concentrations. Cluster ions, Na(NaOAc)(n)(+) or Na(NaI)(n)(+), but no sample ions were observed using 5 mM salts. The data suggest that mechanisms in addition to solution ionization are involved in the formation of the ESI sample ions. The utility of mobile phases containing 1% HOAc or 50 mM NH(4)OH was demonstrated for chromatographic separations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号