首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
陈政清  杨群  李寿英  李瑜 《钢结构》2007,22(10):38-41
钢管混凝土桁架拱桥中多采用主支管直接相贯焊接的节点构造型式.管节点连接处几何形状突变,应力集中明显,使节点成为整个结构的薄弱环节.基于此,采用ANSYS,选取四管桁架拱桥中的三种典型节点构造,利用圣维楠原理分别考虑弦杆与腹杆夹角、主支管管径比、主支管管壁厚比三个参数的影响,对节点进行局部受力分析,考察其对节点构件应力的影响.  相似文献   

2.
《钢结构》2016,(1)
对圆钢管混凝土T/Y型节点在平面内弯矩作用下的抗弯刚度进行数值分析和试验验证,比较空钢管节点和内填充混凝土钢管节点抗弯性能的差异,分析节点各无量纲参数对抗弯刚度的影响,给出钢管混凝土节点的抗弯刚度计算公式。研究表明:空钢管节点的主管内填充混凝土后,节点的抗弯刚度有明显的提高,节点刚度取决于弦杆的径向刚度和弦杆、腹杆相贯面的表面积;节点刚度随主、支管管径比β和主支管厚度比τ的增大而提高,随径厚比γ和主、支管夹角θ的增大而降低;内填充混凝土强度的变化对节点的抗弯刚度影响较小。  相似文献   

3.
郭天裕  祝磊  杨倩  李培阳 《建筑科学》2021,37(11):124-131
圆钢管结构由于受力性能好、施工方便、外形美观的特点,广泛应用于建筑大跨度结构和海洋平台结构中.现有研究及实际工程表明,钢管结构破坏最容易在节点焊接处发生,因此有必要加强钢管结构的节点区域,以提高整体结构的承载性能.本文提出一种圆形钢主管与支管的新型焊接连接节点,包括主管、矩形固定钢板、前部弧形固定钢板、后部弧形固定钢板、连接垫板、支管.首先利用ABAQUS软件建立了有限元模型并准确模拟了用外加劲肋加强T形圆钢管节点的试验研究.在此基础上,对3个不同主管支管外径比(β)的新型T形圆钢管节点在轴压作用下的极限承载性能进行了有限元分析.之后为了研究影响新型节点极限承载性能的因素,对连接垫板边长和矩形固定钢板高度进行了参数化分析.结果表明,对于T1节点,当矩形固定钢板高度与支管直径比不变,连接垫板边长与支管直径比从1.1提高到1.6时,极限承载力提高了33.1%;对于T2节点,当矩形固定钢板高度与支管直径比不变,连接垫板边长与支管直径比从1.1提高到1.6时,极限承载力提高了 45.0%.当连接垫板边长与支管直径比不变,矩形固定钢板高度与支管直径比从0.2提高到0.5时,T1和T2节点的极限承载力几乎没有变化.  相似文献   

4.
郑莲琼 《钢结构》2011,(11):20-23
采用有限元分析软件ABAQUS对K型圆钢管混凝土节点与空钢管节点进行计算分析,比较两者破坏形态的差别,并对K型圆钢管混凝土节点各种可能的破坏模式进行分析.在此基础上,分析支管外径与主管外径比β、支主管夹角θ、弦杆轴向压力等参数对圆钢管混凝土K型节点极限承载力的影响.  相似文献   

5.
钢管混凝土桁架焊接节点构造复杂,焊缝区域应力集中程度高,是疲劳易损部位。根据钢管混凝土桁架2种主要节点构造形式——焊接管节点和管-板焊接节点,利用有限元软件ANSYS分别建立了K型相贯节点、管-板节点和扫把型节点空间模型,基于国际焊接协会(IIW)和挪威船级社(DNV)提出的热点应力计算方法,进行节点连接焊缝处热点应力的数值分析。分别讨论了主管受拉、支管在典型荷载作用下,焊接节点焊趾处的热点应力集中系数。结果表明:管节点热点剪应力幅很小,热点正应力集中系数较大;管-板节点应力集中程度低,最大热点应力集中出现在管-板节点的节点板端部;扫把型节点应力集中特性与管-板节点相似,但构造相对复杂。依照基于热点应力S-N曲线的疲劳性能评估方法,钢管混凝土桁架结构采用管-板节点时,具有较好的抗疲劳性能。  相似文献   

6.
空间管桁结构相贯节点计算机放样   总被引:6,自引:1,他引:5  
罗尧治  张楠 《钢结构》2002,17(2):59-61
空间管桁结构是目前流行的结构形式 ,其节点由多根不同方向的钢管相贯连接。工程上 ,为了使钢管相贯处焊缝均匀 ,焊接可靠 ,需要将钢管的焊口准确切割成型。由于相交钢管的直径、位置及相贯角的不同 ,其相贯线的形状也不相同。文中分别推导出了两根钢管和三根钢管以任意角度相交时相贯线的空间方程和平面展开方程 ,并利用计算机辅助功能 ,绘出任意管径的钢管在任意角度相交时的相贯线图形。从而解决管桁结构在施工中钢管的切割、放样等问题  相似文献   

7.
钢管混凝土桁架拱桥中多采用主支管直接相贯焊接的节点构造型式。管节点连接处几何形状突变,应力集中明显,使节点成为整个结构的薄弱环节。基于此,采用ANSYS,选取四管桁架拱桥中的三种典型节点构造,利用圣维楠原理分别考虑弦杆与腹杆夹角、主支管管径比、主支管管壁厚比三个参数的影响,对节点进行局部受力分析,考察其对节点构件应力的影响。  相似文献   

8.
张超 《山西建筑》2010,36(28):50-51
对工程实践中常用到的圆钢管相贯节点进行了数值模拟分析,探讨了主管夹角、支管与主管的外径比、主管径厚比、支主管壁厚比、支管与主管之间的夹角、支管与主管平面夹角等参数对相贯节点轴向刚度的影响,得出了不同参数对相贯节点刚度影响的关系曲线。  相似文献   

9.
为研究GFRP管夹层灌浆修复锈蚀钢管节点的受压性能,改变支主管直径比、锈蚀率及修复构造,完成8个T形圆钢管节点的支管轴向受压静力加载试验。通过对主管加速锈蚀及GFRP管夹层进行灌浆修复,实测各钢管节点的破坏模式、荷载-变形曲线和荷载-应变曲线,分析节点受压承载力和初始刚度。结果表明:质量损失10%的主管锈蚀会使T形圆钢管节点受压承载力下降近20%,但未改变节点的失效模式;主管GFRP管夹层灌浆修复使锈蚀T形圆钢管节点的受压承载力提高100%左右,且较未锈蚀对比T形圆钢管节点可提高约70%;GFRP外管的约束作用是提升节点受压性能的关键,采用无约束作用的PVC外管会使灌浆层过早开裂并剥离,修复效果一般;主管焊接连接键可以增强钢管与灌浆夹层之间的锚固,其对PVC管夹层灌浆修复锈蚀节点的提升作用更明显,但对有GFRP约束修复T形圆钢管节点的贡献很小。建立并验证了各类T形圆钢管节点的有限元模型,揭示未修复节点主管塑性化变形失效机制,以及GFRP管夹层灌浆的约束作用对于锈蚀节点受压性能的提升机理。  相似文献   

10.
以塔桅工程中空间圆钢管相贯节点为背景,应用有限元程序对其进行轴向拉、压极限状态的数值模拟.分析节点在荷载作用下局部应力分布、主管鞍点的荷载变形关系,对支管搭接的影响、应力集中系数和节点极限承载力进行探讨,提出在节点区局部采用钢管混凝土改善受力条件的可行性.  相似文献   

11.
在统计分析19个钢管K形相贯节点试件失效模式和极限承载力的基础上,对我国《钢结构设计规范》(GB50017—2003)的承载力计算方法进行了分析。结果表明,受压支管内力引起节点失效时,节点承载力试验值与计算值总体上吻合较好;而受拉支管内力引起节点失效时,节点承载力的计算值明显小于试验值。进行了2个支管拉伸破坏的钢管K形相贯节点试验,结果进一步表明我国钢结构规范计算值偏于保守。提出了对支管拉力作用下K形节点承载力乘以增大系数的建议,建议方法计算精度明显提高且仍有足够的安全性。  相似文献   

12.
为研究不同类型焊接管节点疲劳性能差异,梳理焊接管节点结构形式发展和构造创新,总结各类节点热点应力集中系数静力试验和疲劳试验成果,回归分析给出各类节点用于疲劳设计的热点应力幅-循环次数(S_h-N)曲线,并从热点应力幅曲线和热点应力集中系数两方面,对比各类节点疲劳性能差异。结果表明:对于S_h-N曲线,当钢管板厚t≤4 mm时,焊缝缺陷成为影响疲劳强度的主要因素,使得疲劳强度显著降低;现行规范中,CIDECT规范(Design guide No.8)的S_h-N曲线对各类节点设计均偏于危险,DNV-RP-C203的S_h-N曲线可适用于方形鸟嘴式钢管节点和钻石形鸟嘴式钢管节点疲劳设计,但对于其他节点设计偏危险;API RP 2A-WSD中的X’曲线的疲劳强度低于X曲线的,X’曲线适用于鸟嘴式节点和传统的圆形、矩形钢管节点及相应的主管内填混凝土节点设计,X曲线对任何节点设计均偏危险;在相同的几何参数β、2γ和τ(β、2γ、τ分别为支主管宽度比、主管宽厚比及支主管厚度比)下,各类节点的疲劳性能优劣顺序为,圆形钢管混凝土节点、圆形钢管节点、矩形钢管混凝土节点、矩形钢管节点;圆管-矩形钢管混凝土节点疲劳性能略优于矩形钢管节点的疲劳性能,圆管-矩形钢管节点疲劳性能劣于矩形钢管节点的疲劳性能;当β≤0.7时,建议采用方形鸟嘴式钢管节点和钻石形鸟嘴式钢管节点。  相似文献   

13.
建立了钢管混凝土K形节点的精细化有限元模型,基于模型试验数据对有限元模型进行校核,试验值与有限元计算值最大相对偏差为7. 26%,平均相对偏差为3. 72%,说明有限元模型具有较高的精度。采用理论分析和数值模拟方法对钢管混凝土K形节点破坏模式和极限承载力影响因素进行研究,结果表明:钢管混凝土K形节点荷载-位移曲线可分为弹性、弹塑性和破坏三个阶段,破坏模式为受压支管接头局部屈曲破坏和受拉支管接头处主管扯裂破坏;节点极限承载力随着主管径厚比、支管径厚比和支管间隙的减小而变大,随着支管与主管外径比、支管与主管壁厚比、核心混凝土等级的增加而变大,随着支管与主管轴线夹角的增大而先变小再变大,随着主管轴压力水平先变大后变小;节点极限承载力增长系数与节点尺寸缩放系数之间呈正相关,基本呈线性增长,节点极限承载力增长系数变化速度大于尺寸缩放系数,最后提出了钢管混凝土K形节点不同破坏模式的极限承载力建议公式。  相似文献   

14.
为了解平面X形圆钢管混凝土节点的平面外受弯性能,分别对4个主管填混凝土和4个支管填混凝土的平面X形圆钢管节点进行支管平面外弯矩作用下的试验研究。考察了支管、主管分别填混凝土2种情况下节点的破坏模式和应力分布,并分析了钢管内混凝土对节点平面外抗弯刚度及承载力的影响。试验中支管填混凝土节点出现了主管塑性、支管局部屈曲和支管受拉侧焊缝或热影响区管壁开裂的破坏模式,主管填混凝土节点则发生了支管局部屈曲及支管受拉侧焊缝开裂破坏。主管填混凝土节点与支管填混凝土节点相比,由于主管内填混凝土对于主管管壁的局部变形起到明显的约束作用,明显提高了主管的径向刚度,增大了节点的平面外抗弯刚度。实测节点承载力与欧洲规范计算的空钢管节点理论承载力比较表明,主管内填混凝土能极大提高节点平面外受弯承载力,最大可提高132%;支管内填混凝土可使节点平面外受弯承载力最大提高60%。  相似文献   

15.
《钢结构》2017,(10):29-33
对1个方钢管K型节点试件和主管填充混凝土的6个K型方钢管节点试件进行拟静力试验,以研究支管尺寸、支管间隙等参数对方钢管混凝土K型节点破坏模式和延性的影响,并与K型方钢管节点试件进行对比。主管填充混凝土的K型方钢管节点的破坏模式包括支管与主管之间的焊缝破坏、支管受拉断裂、支管鼓曲以及主管撕裂;支管间隙较大的试件更容易出现主管撕裂破坏。主管填充混凝土后,其径向刚度显著提高,支管与主管连接处的应力集中程度也有所改善,节点的屈服荷载和峰值荷载有不同程度的提高,尤其是受压循环的峰值荷载提高幅值达到60%以上。主管填充混凝土后,K型方钢管节点试件的延性以及耗能系数都有所降低。  相似文献   

16.
对平面K形圆主管方支管节点的承载力进行试验研究,进行了5个空钢管节点和1个主管内灌混凝土节点的静力单调加载试验。介绍了节点试验方案,考察了节点的受力性能、破坏模式和承载力,给出了试件支管的变形曲线以及折算应变曲线,并对支管壁厚、主管内浇灌混凝土对节点承载力、刚度和延性的影响进行了分析。试验结果表明:现行国内外规范中圆钢管和方钢管节点承载力计算值明显低于试验值,已有的计算公式都不能准确计算圆主管方支管节点的承载力;增加支管壁厚改变了节点的破坏模式并明显提高了节点承载力和延性;主管内灌混凝土虽提高了承载力和初始刚度但延性并没有得到显著提高;圆主管方支管节点区域的变形主要源于受拉支管的局部变形。在节点破坏模式、变形曲线、承载力和塑性发展等方面将有限元计算值与试验结果进行比较,结果吻合良好,可以作为进一步分析的基础。  相似文献   

17.
矩形钢管混凝土K型节点受力性能试验   总被引:7,自引:4,他引:7  
对6个矩形钢管混凝土K型节点和1个矩形钢管K型节点进行了受力性能试验研究,结合Packer试验结果,对矩形钢管混凝土K型节点的破坏模式及节点间隙对节点性能的影响进行了分析,并和矩形钢管节点进行对比,推导了K型节点与Y型节点的判别式。试验结果表明:矩形钢管混凝土K型节点没有发生屈服线破坏模式,节点极限承载力得到了有效的提高;受拉支管破坏模式与矩形钢管节点相似,为冲剪破坏和有效宽度破坏;在满足受压支管承载力的前提下,受压支管为横向局部承压破坏模式;当受压支管宽厚比较大时,可不考虑节点间隙对节点承载力的影响;当受压支管宽厚比较小、节点间隙较大时,需考虑节点间隙对节点极限承载力的影响。  相似文献   

18.
为研究环口板的加固效果,对5个T型圆钢管试件支管处施加轴向压力,试验分析了加固、环口板加固及伤损再加固后钢管的极限承载力,试验结果表明:环口板可以有效的提高主支管节点处的刚度,提高试件的承载力,对于不同程度的伤损试件,环口板依然有着可观的加固效果。  相似文献   

19.
圆钢管桁架在主管内填筑混凝土,可有效提高其承载力。为了获得圆钢管混凝土桁架K形节点受力性能和承载力计算方法,研究了在受拉或受压支管处K形节点的失效模式和破坏机理;基于圆钢管混凝土K形节点在不同失效模式下的破坏机理和受力状态,分别对支管截面形式为圆形或矩(方)形的圆钢管混凝土K形节点建立合理的简化计算模型,推导出不同失效模式下K形节点极限承载力计算公式,并给出相应的极限承载力建议公式。试验验证了圆钢管混凝土K形节点的试验值与计算值吻合较好,研究表明圆钢管混凝土K形节点的极限承载力计算公式的准确性,可应用于圆钢管混凝土桁架结构计算和设计,也为相关标准建立和完善提供理论依据。  相似文献   

20.
方钢管相关节点因钢管径向刚度较小,可能因径向变形过大导致节点失效,因此,节点区需要进行加固,相比外部加劲方式,内置加劲板可显著提高节点的静力承载力、减小节点变形。为探讨设置内加劲板后节点的抗震性能,论文采用数值分析的方法探讨了不同加劲构造情况下节点的破坏模式、节点的延性和耗能能力。分析结果表明,加劲板的设置改变了节点的破坏模式、由主支管交界处的局部屈曲转移到了离主支管交界处一段距离处。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号