首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian phosphatidylinositol 3-kinase (PI 3-kinase) plays an important role in the regulation of various cellular, receptor tyrosine kinase-mediated processes, such as mitogenesis and transformation. PI 3-kinase is composed of a 110-kDa catalytic subunit and a regulatory subunit of 85 kDa or 55 kDa. We have cloned a gene for a regulatory subunit from Drosophila melanogaster, named droPIK57, from head-specific cDNA libraries. The droPIK57 gene encodes a protein containing two SH2 domains with significant sequence homology to those in p85 and p55. Like the p55 subunits, DroPIK57 is missing the SH3 domain and the bcr homology region of the p85 subunit. The short N-terminus as well as the C-terminus of the DroPIK57 protein show no identity to the known PI 3-kinase subunits, suggesting that it is a new member in the family of regulatory subunits. In-situ hybridization and Northern blot analysis indicate a widespread function of this gene during embryogenesis and in the CNS.  相似文献   

2.
Phosphoinositide 3-kinase (PI 3-kinase) is a key signaling enzyme implicated in variety of receptor-stimulated cell responses. Receptors with intrinsic or associated tyrosine kinase activity recruit heterodimeric PI 3-kinases consisting of a 110-kDa catalytic subunit (p110) and an 85-kDa regulatory subunit (p85). We separated a PI 3-kinase that could be stimulated by the betagamma subunits of G protein (Gbetagamma) from rat liver. The Gbetagamma-sensitive PI 3-kinase appeared to be a heterodimer consisting of p110beta and p85 (or their related subunits). The stimulation by Gbetagamma was inhibited by the GDP-bound alpha subunit of the inhibitory GTP-binding protein. Moreover, the stimulatory action of Gbetagamma was markedly enhanced by the simultaneous addition of a phosphotyrosyl peptide synthesized according to the amino acid sequence of the insulin receptor substrate-1. Such enzymic properties could be observed with a recombinant p110beta/p85alpha expressed in COS-7 cells with their cDNAs. In contrast, another heterodimeric PI 3-kinase consisting of p110alpha and p85 in the same rat liver, together with a recombinant p110alpha/p85alpha, was not activated by Gbetagamma, although their activities were stimulated by the phosphotyrosyl peptide. These results indicate that p110beta/p85 PI 3-kinase may be regulated in a cooperative manner by two different types of membrane receptors, one possessing tyrosine kinase activity and the other activating GTP-binding proteins.  相似文献   

3.
Phosphatidylinositol 3-kinase (PI 3-kinase) is stimulated by association with a variety of tyrosine kinase receptors and intracellular tyrosine-phosphorylated substrates. We isolated a cDNA that encodes a 50-kDa regulatory subunit of PI 3-kinase with an expression cloning method using 32P-labeled insulin receptor substrate-1 (IRS-1). This 50-kDa protein contains two SH2 domains and an inter-SH2 domain of p85alpha, but the SH3 and bcr homology domains of p85alpha were replaced by a unique 6-amino acid sequence. Thus, this protein appears to be generated by alternative splicing of the p85alpha gene product. We suggest that this protein be called p50alpha. Northern blotting using a specific DNA probe corresponding to p50alpha revealed 6.0- and 2.8-kb bands in hepatic, brain, and renal tissues. The expression of p50alpha protein and its associated PI 3-kinase were detected in lysates prepared from the liver, brain, and muscle using a specific antibody against p50alpha. Taken together, these observations indicate that the p85alpha gene actually generates three protein products of 85, 55, and 50 kDa. The distributions of the three proteins (p85alpha, p55alpha, and p50alpha), in various rat tissues and also in various brain compartments, were found to be different. Interestingly, p50alpha forms a heterodimer with p110 that can as well as cannot be labeled with wortmannin, whereas p85alpha and p55alpha associate only with p110 that can be wortmannin-labeled. Furthermore, p50alpha exhibits a markedly higher capacity for activation of associated PI 3-kinase via insulin stimulation and has a higher affinity for tyrosine-phosphorylated IRS-1 than the other isoforms. Considering the high level of p50alpha expression in the liver and its marked responsiveness to insulin, p50alpha appears to play an important role in the activation of hepatic PI 3-kinase. Each of the three alpha isoforms has a different function and may have specific roles in various tissues.  相似文献   

4.
Insulin binds to the alpha subunit of the insulin receptor which activates the tyrosine kinase in the beta subunit and tyrosine-phosphorylates the insulin receptor substrates-1 (IRS-1). Insulin promotes the formation of a complex between tyrosine-phosphorylated IRS-1 and several proteins including phosphoinositide(PI) 3-kinase, a heterodimer consisting of regulatory 85-kDa (p85) and catalytic 110-kDa (p110) subunits, GRB2 and Syp via the Src homology region 2 (SH2) domains. Recently, it was suggested that GRB2-Sos complex binding to IRS-1 was linked to Ras activation and that PI 3-kinase binding to IRS-1 was linked to activation of glucose transport. Since the mechanism of insulin-stimulated glucose uptake is mainly due to translocation of glucose transporters from an intracellular vesicle pool to the plasma membrane, PI 3-kinase activity may be involved in vesicle transport in mammalian cells.  相似文献   

5.
6.
We propose a novel model for the regulation of the p85/pl10alpha phosphatidylinositol 3'-kinase. In insect cells, the p110alpha catalytic subunit is active as a monomer but its activity is decreased by coexpression with the p85 regulatory subunit. Similarly, the lipid kinase activity of recombinant glutathione S-transferase (GST)-p110alpha is reduced by 65 to 85% upon in vitro reconstitution with p85. Incubation of p110alpha/p85 dimers with phosphotyrosyl peptides restored activity, but only to the level of monomeric p110alpha. These data show that the binding of phosphoproteins to the SH2 domains of p85 activates the p85/p110alpha dimers by inducing a transition from an inhibited to a disinhibited state. In contrast, monomeric p110 had little activity in HEK 293T cells, and its activity was increased 15- to 20-fold by coexpression with p85. However, this apparent requirement for p85 was eliminated by the addition of a bulky tag to the N terminus of p110alpha or by the growth of the HEK 293T cells at 30 degrees C. These nonspecific interventions mimicked the effects of p85 on p110alpha, suggesting that the regulatory subunit acts by stabilizing the overall conformation of the catalytic subunit rather than by inducing a specific activated conformation. This stabilization was directly demonstrated in metabolically labeled HEK 293T cells, in which p85 increased the half-life of p110. Furthermore, p85 protected p110 from thermal inactivation in vitro. Importantly, when we examined the effect of p85 on GST-p110alpha in mammalian cells at 30 degrees C, culture conditions that stabilize the catalytic subunit and that are similar to the conditions used for insect cells, we found that p85 inhibited p110alpha. Thus, we have experimentally distinguished two effects of p85 on p110alpha: conformational stabilization of the catalytic subunit and inhibition of its lipid kinase activity. Our data reconcile the apparent conflict between previous studies of insect versus mammalian cells and show that p110alpha is both stabilized and inhibited by dimerization with p85.  相似文献   

7.
8.
We have employed cDNA cloning to deduce the complete primary structures of p44.5 and p55, two subunits of PA700, a 700-kDa multisubunit regulatory complex of the human 26S proteasome. These polypeptides consist of 422 and 456 amino acids with calculated molecular masses of 47463 and 52903, and isoelectric points of 6.06 and 7.56, respectively. Computer-assisted homology analysis revealed high sequence similarities of p44.5 and p55 with yeast proteins whose functions are yet unknown. Disruption of the yeast genes, termed NAS4 and NAS5 (non-ATPase subunits 4 and 5), resulted in lethality, indicating that each of the two subunits is essential for proliferation of yeast cells.  相似文献   

9.
The AMP-activated protein kinase (AMPK) is a heterotrimeric complex composed of a catalytic subunit (alpha) and two regulatory subunits (beta and gamma). Two isoforms of the catalytic subunit (alpha1 and alpha2) have been identified. We show here that the alpha1- and alpha2-containing complexes contribute approximately equally to total AMPK activity in rat liver. Furthermore, expression of alpha1 or alpha2 with beta and gamma in mammalian cells demonstrates that both complexes have equal specific activity measured with the SAMS peptide. Using variant peptides, however, we show that alpha1 and alpha2 exhibit slightly different substrate preferences, which suggest that the two isoforms could play different physiological roles within the cell.  相似文献   

10.
Tenascin-C, a predominantly mesenchymal extracellular matrix protein, has a restricted distribution in adult tissues. It has previously been shown that this protein is expressed in the bone marrow. In this paper we show that murine myeloid and lymphoid long-term bone marrow cultures differ in their expression of tenascin-C splice variants. In the adherent stromal layer of myeloid cultures, the 260-kDa polypeptide encoded by the 8-kb mRNA was the major splice variant, whereas in the stromal layer of lymphoid cultures both the shorter 210-kDa polypeptide encoded by the 6-kb mRNA and the 260-kDa polypeptide were abundantly expressed. However, in both culture systems the larger 260-kDa tenascin-C polypeptide was the major isoform secreted in the culture supernatant. This finding is in agreement with previous reports indicating that the smaller 210-kDa isoform is preferentially deposited in the stroma, whereas the alternatively spliced segment in the 260-kDa tenascin-C may contain anti-adhesive domains. Glucocorticoids in myeloid long-term bone marrow cultures and in the MC3T3-G2/PA6 cell line downregulated the expression of tenascin-C. In the present study we observed that this was due primarily to downregulation of the 8-kb major splice variant of the tenascin-C mRNA. We also studied the possible role of tenascin-C in the bone marrow by using antibodies against tenascin-C in long-term bone marrow cultures. We found that three monoclonal antibodies against the carboxyterminal type III fibronectin repeats of tenascin-C (TNCfn 7-8) increased the number of the non-adherent myeloid cells in myeloid long-term bone marrow cultures. It has recently been suggested that the TNCfn 6-8 domain of tenascin-C binds to the alpha8beta1 integrin. Using Northern blotting, we found that the integrin alpha8 subunit was expressed in adherent cells in bone marrow cultures, raising the possibility that tenascin-C acts in bone marrow cultures by binding to the alpha8beta1 integrin.  相似文献   

11.
12.
The 20S proteasome is the proteolytic complex in eukaryotes responsible for degrading short-lived and abnormal intracellular proteins, especially those targeted by ubiquitin conjugation. The 700-kD complex exists as a hollow cylinder comprising four stacked rings with the catalytic sites located in the lumen. The two outer rings and the two inner rings are composed of seven different alpha and beta polypeptides, respectively, giving an alpha7/beta7/beta7/alpha7 symmetric organization. Here we describe the molecular organization of the 20S proteasome from the plant Arabidopsis thaliana. From an analysis of a collection of cDNA and genomic clones, we identified a superfamily of 23 genes encoding all 14 of the Arabidopsis proteasome subunits, designated PAA-PAG and PBA-PBG for Proteasome Alpha and Beta subunits A-G, respectively. Four of the subunits likely are encoded by single genes, and the remaining subunits are encoded by families of at least 2 genes. Expression of the alpha and beta subunit genes appears to be coordinately regulated. Three of the nine Arabidopsis proteasome subunit genes tested, PAC1 (alpha3), PAE1 (alpha5) and PBC2 (beta3), could functionally replace their yeast orthologs, providing the first evidence for cross-species complementation of 20S subunit genes. Taken together, these results demonstrate that the 20S proteasome is structurally and functionally conserved among eukaryotes and suggest that the subunit arrangement of the Arabidopsis 20S proteasome is similar if not identical to that recently determined for the yeast complex.  相似文献   

13.
14.
Serine and threonine phosphorylation has been shown to down-regulate insulin signaling at multiple steps, including the receptor and downstream molecules such as insulin receptor substrate-1 (IRS-1). To further address the mechanism of this regulation at the level of IRS-1, we constructed a double serine mutant of IRS-1: S662A/S731A-IRS-1. The serines 662 and 731 mutated to alanine are surrounding tyrosines Y658 and Y727, respectively. These tyrosines are comprised in YXXM motifs, which are potential binding sites for the p85alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase. In a first series of experiments using the yeast two-hybrid system, we show that IRS-1 interacts with p85alpha, and this interaction depends on tyrosine phosphorylation, as shown with the IRS-1 mutant F18 and 3Y-IRS-1. F18-IRS-1 contains 18 potential tyrosine phosphorylation sites mutated to phenylalanine; three of them, i.e. Y608, 628, and 658, which are potential binding sites for p85alpha, have been added back in the 3Y-IRS-1 mutant. The tyrosine phosphorylation of IRS-1, which is required for the interaction with p85alpha, is thought to occur via endogenous yeast kinases that phosphorylate IRS-1 at least on these PI 3-kinase-binding sites. Next, we show that not only p85alpha but also p55PIK, another regulatory subunit of PI 3-kinase, interacts with IRS-1 in yeast. Interestingly, for both regulatory subunits their interaction with IRS-1 is up-regulated by mutating serines 662 and 731 on IRS-1. In a previous study we found that insulin-stimulated PI 3-kinase activity was increased not only in the presence of S662A/S731A-IRS-1 but also under resting conditions compared with the activity seen with WT-IRS-1. Here we demonstrate in 293-EBNA cells overexpressing S662A/S731A-IRS-1 that insulin-stimulated protein kinase B activity is not augmented, whereas without insulin treatment, basal activity is increased compared with that in cells overexpressing wild-type IRS-1. In conclusion, we have shown that 1) potential serine phosphorylation sites on IRS-1, which are adjacent to YXXM binding motifs for PI 3-kinase, negatively regulate binding of IRS-1 to PI 3-kinase regulatory subunits; and 2) these modulations affect protein kinase B activity.  相似文献   

15.
16.
17.
18.
19.
20.
The 5'-AMP-activated protein kinase is responsible for the regulation of fatty acid synthesis by phosphorylation and inactivation of acetyl-CoA carboxylase. The porcine liver 5'-AMP-activated protein kinase 63-kDa catalytic subunit co-purifies 14,000-fold with a 38- and 40-kDa protein (Mitchelhill, K.I. et al. (1994) J. Biol. Chem. 269, 2361-2364). The 63-kDa subunit is homologous to the Saccharomyces cerevisiae Snf1 protein kinase, which regulates gene expression during glucose derepression. Peptide amino acid and polymerase chain reaction-derived partial cDNA sequences of both the pig and rat liver enzymes show that the 38-kDa protein is homologous to Snf4p (CAT3) and that the 40-kDa protein is homologous to the Sip1p/Spm/GAL83 family of Snf1p interacting proteins. Sucrose density gradient and cross-linking experiments with purified 5'-AMP-activated protein kinase suggest that both the 38- and 40-kDa proteins associate tightly with the 63-kDa catalytic polypeptide in either a heterotrimeric complex or in dimeric complexes. The 40-kDa subunit is autophosphorylated within the 63-kDa subunit complex. The sequence relationships between the mammalian 5'-AMP-activated protein kinase and yeast Snf1p extend to the subunit proteins consistent with conservation of the functional roles of these polypeptides in cellular regulation by this family of metabolite-sensing protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号