共查询到20条相似文献,搜索用时 62 毫秒
1.
聚苯胺(PANI)是高分子化合物中的一种,其具有特殊的电学、光学性质,经掺杂后兼具导电性和电化学性能.作为一种带有共轭双键的结构型导电高分子,聚苯胺在开发及制备各种具有特殊功能的设备和材料领域中有较大的应用前景.采用苯胺作为原料,十二烷基苯磺酸作为掺杂剂,在水相中添加少量的聚乙烯吡咯烷酮,制备了具有纳米纤维结构的聚苯胺... 相似文献
2.
用乳液聚合法制备聚苯胺/SBS导电复合材料 总被引:6,自引:1,他引:5
在15-20℃下,以十二烷基苯磺酸做乳化剂和掺杂剂,苯胺在溶有SBS的有机溶剂中聚合24h下,可制备聚苯胺/SBS导电复合材料。该复合材料可热成型或溶液成型,所得试样表现出不同的逾渗域值:前者的PAn=-DBSA质量分数为20%,后者为15%; 相似文献
3.
以苯胺为单体,过硫酸铵为氧化剂,盐酸为掺杂酸,采用化学氧化法制备出盐酸掺杂聚苯胺(PANI-HA),研究了过硫酸铵与苯胺单体摩尔比(n APS:n An)、HCl浓度、反应温度和反应时间对PANI-HA电导率的影响;采用正交分析法研究了各影响因素对PANI-HA电导率的主次关系。结果表明:影响PANI-HA电导率的主次关系为反应温度n APS:n An反应时间HCl浓度;制备PANI-HA的最佳工艺为nAPS:n An=1.0,HCl浓度1.0 mol/L,反应温度10℃,反应时间8 h。 相似文献
4.
聚苯胺导电复合材料的制备及其性能研究 总被引:2,自引:0,他引:2
《塑料》2008,(5)
通过原位乳液聚合制备了PANI-HCl/P(MMA-BA)导电复合材料,对其导电率进行测试,并用FTIR、STA、XPS对导电复合材料的结构、热学性能、掺杂率进行了表征。结果表明:当APS/ANI摩尔比为1:1.5、反应单体中ANI为33%时,导电复合材料中PANI表面掺杂率为37.56%,复合材料电导率达到1.472×103S/cm。FTIR谱图表明导电复合材料分子结构中存在C=O、N=Q=N、N-B-N等基团,说明共聚物P(MMA-BA)已经存在于复合材料中。STA测试结果表明:导电复合材料的玻璃化温度(Tg)为127℃,在270℃以下稳定性较好,通过原位乳液复合所得PANI-HCl/P(MMA-BA)导电复合材料的加工性及热稳定性能得到了改善。 相似文献
5.
6.
7.
通过原位乳液聚合制备了PANI-HCI/P(MMA-BA)导电复合材料,对其导电率进行测试,并用FTIR、STA、XPS对导电复合材料的结构、热学性能、掺杂率进行了表征.结果表明:当APS/ANI摩尔比为1:1.5、反应单体中ANI为33%时,导电复合材料中PANI表面掺杂率为37.56%,复合材料电导率达到1.472×103S/cm.FTIR谱图表明导电复合材料分子结构中存在C=O、N=Q=N、N、-B-N等基团,说明共聚物P(MMA-BA)已经存在于复合材料中.STA测试结果表明:导电复合材料的玻璃化温度(Tg)为127℃,在270℃以下稳定性较好,通过原位乳液复合所得PANI-HCI/P(MMA-BA)导电复合材料的加工性及热稳定性能得到了改善. 相似文献
8.
采用微粒填充法技术制备了TiN/聚苯胺复合膜,对复合膜的导电性能以及对废水的光降解能力进行了探讨。结果表明TiN/聚苯胺复合膜具有良好的导电性能,并可有效的处理含有活性艳红(X-3B)染料的废水。 相似文献
9.
10.
11.
以十二烷基苯磺酸为乳化剂及掺杂剂,由二甲苯及水组成乳液,在氯磺化聚乙烯存在下,采用一步原位乳液聚合法制备了聚苯胺/氯磺化聚乙烯(PAn/CSPE)导电复合材料。研究了用熔融法(MP)或溶液法(SP)加工复合物材料的导电性及力学性能,并进行了表征。结果表明,MP法制得的复合材料在导电性及力学性能方面优于SP法制得的复合材料;当PAn质量分数为12%~18%时,MP法复合材料呈现热塑性弹性体行为,拉伸强度为6~8MPa,扯断伸长率大于400%,永久变形小于30%。当PAn质量分数小于18%时,SP法复合材料用闻甲酚二次渗杂后的导电率比原复合材料高出6个数量级,且其导电渗滤阈值由PAn质量分数22%降至3%。 相似文献
12.
13.
Sunil Shah Angshuman Pal Tushar Rajyaguru R. S. R. Murthy Surekha Devi 《应用聚合物科学杂志》2008,107(5):3221-3229
A series of copolymeric nanoparticles of the partially water‐soluble monomer ethyl methacrylate and the water‐soluble monomer 2‐hydroxyl ethyl methacrylate were synthesized from emulsions containing sodium dodecyl sulfate via free‐radical polymerization. Lamotrigine, as a model drug, was loaded in nanoparticles during in situ polymerization. A stable and transparent poly(ethyl methacrylate‐co‐hydroxyl ethyl methacrylate) nanolatex was produced for all compositions and characterized for particle size by dynamic light scattering and transmission electron microscopy. Particles were found to be smaller than 50 nm in size. Structural characterization of copolymers was done by infrared spectrometry, gel permeation chromatography, and NMR spectroscopy. Drug encapsulation efficiency was determined by ultraviolet (UV)–visible spectrometry and was found to be 26–62% for copolymers with different compositions. UV data suggest molecular‐level dispersion of the drug in the nanoparticles. In vitro drug‐release studies showed the controlled release of lamotrigine. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
14.
The conductive composites of polyaniline (PAn) and chlorosulfonated polyethylene (CSPE) were prepared by polymerization of aniline in the presence of CSPE, using a direct, one‐step in situ emulsion polymerization method. The polymerization of aniline was performed in an emulsion comprising water and xylene containing CSPE in the presence of dodecylbenzene sulfonic acid, which acts both as a surfactant and a dopant for PAn. The composites can be processed by either melt method (MP) or solution method (SP). Conductivity of the composites obtained by different processing methods shows different percolation thresholds: 14 wt % for MP samples and 22 wt % for SP samples. At the same content of PAn, the conductivity of MP composites is higher than that of SP composites. The relationships between mechanical properties and PAn content obtained by the two different processing methods were also investigated. When PAn content of MP samples is between 12 and 18 wt %, the composites behave like a thermoplastic elastomer with tensile strength at 6–8 MPa, ultimate elongation > 400% and permanent set < 30%. The conductivity of composites obtained by SP method after secondary doping with m‐cresol is about 6 orders of magnitude higher than the original at below 18 wt % PAn content and the percolation threshold for conductivity is lowered to 3 wt % PAn content. The composite shows no electrochromic activity in acidic solution of LiClO4 in propylene carbonate, but after secondary doping exhibits electrochromic activity even in neutral electrolyte. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 845–850, 2000 相似文献
15.
Xiao Wang Xiufeng Hao Dan Chang Chongyi Zhu Lili Chen Alideertu Dong Ge Gao 《应用聚合物科学杂志》2019,136(17):47419
N-halamine-based antibacterial agents have high efficiency and rechargeable antibacterial properties. However, their applications are limited due to their complex synthetic process and fuzzy antibacterial mechanism. In this study, a novel N-halamine antibacterial polymer was synthesized by inverse emulsion polymerization and characterized by Fourier transform infrared, nuclear magnetic resonance, scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. Due to the difficulty of purification, most of the subjects studied previously were hydrophobic polymers, while little research on hydrophilic polymers. In this experiment, this difficulty was overcome by controlling the dosage of sodium hypochlorite and methods of dialysis. Because of the complex cell structure of Gram-negative bacteria, it is difficult for N-halamines to release the oxidizing chlorine into the cell. However, the hydrophilic N-halamines can solve this problem, which showed a stronger antibacterial effect on Gram-negative Escherichia coli synthesized in this study. In addition, the particle size and hydrophilic property of the polymer were changed by changing the amount of initiator, and the differences in their antibacterial properties were studied. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47419. 相似文献
16.
17.
通过反相乳液法合成了一系列两性共聚物Poly(AM-DMPS),并研究了该两性共聚物对黏土的絮凝效果,结果发现,该两性共聚物对黏土有较好的絮凝效果,同时对絮凝现象进行了机理探讨. 相似文献
18.
19.
Polyaniline (PANI) was prepared, respectively, by direct mixed oxidation method in different acids. Scanning electron microscopy showed that high quality of PANI nanofibers can be obtained easily in hydrochloric acid, sulfuric acid, and acetic acid, especially in the sulfuric acid; infrared and ultraviolet spectra characterization showed all products were the doped PANI. Then, using complex emulsifiers, PANI was dispersed in acrylate emulsion by supersonic dispersion assisted with mechanical stirred to obtain mixed pre‐emulsion, the result showed different PANI performed different dispersing stability in the pre‐emulsion. More importantly, PANI–polyacrylate copolymer was prepared through multi‐steps in situ emulsion polymerization using water‐soluble azo (VA‐044) as initiator. Experiment showed that good dispersing stability of PANI in the pre‐emulsion was premise to obtain the final stable copolymer emulsion. Further, the micro‐morphology and thermal property of the copolymer were studied by transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analyzer. The result proved that acrylate occurred in situ polymerization on surface of PANI nanofibers, the presence of PANI increased glass transition temperature (Tg) and thermal decomposed temperature of the copolymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献